

BRM AERO, s.r.o. LETECKÁ 255 686 04 KUNOVICE CZECH REPUBLIC Phone: +420 773 984 338 E-mail: info@brmaero.com www.brmaero.com

Registration: N557BL

Serial Number: 357/2018

This airplane must be operated in compliance with information and limitations contained in herein. This AOI must be available on board of the airplane.

i

INTENTIONALLY LEFT BLANK

Date of Issue: 03/2018 Document No.: SLSA-AOI-5-7-0-US Revision: -

SECTION 0

- 0 Technical Information
- 0.1 Record of revisions
- 0.2 List of effective pages
- 0.3 Table of contents

0.1 Record of revisions

Any revision of the present manual (except actual weighing data, cockpit description and list of instruments and avionics) must be recorded in the following table.

Revision No.	Affected Section	Affected Pages	Date of Issue	Approved by	Date of approval	Date inserted	Sign.
-	ALL	ALL, Initial	03/2018	Petr Javorský	03/2018	03/2018	P Javorský

0.2 List of effective pages

Section	Page	Revision	Date of Issue	Section	Page	Revision	Date of Issue	Section	Page	Revision	Date of Issue
	Title	-	03/2018	0	0-1	2	03/2018	1	1-1	2	03/2018
	i	2	03/2018		0-2	2	03/2018		1-2	-	03/2018
	ii	2	03/2018		0-3	2	03/2018		1-3	-	03/2018
					0-4	2	03/2018		1-4	2	04/2016
					0-5	2	03/2018		1-5	-	03/2018
					0-6	2	03/2018		1-6	-	03/2018
					0-7	1	03/2018		1-7	-	03/2018
					0-8	2	03/2018		1-8	2	03/2018

Section	Page	Revision	Date of Issue	Section	Page	Revision	Date of Issue	Section	Page	Revision	Date of Issue
2	2-1	-	03/2018	3	3-1	2	03/2018	4	4-1	2	03/2018
	2-2	2	03/2018		3-2	2	03/2018		4-2	-	03/2018
	2-3	2	03/2018		3-3		03/2018		4-3	•	03/2018
	2-4	-	03/2018		3-4	-	03/2018		4-4	-	03/2018
	2-5	-	03/2018		3-5	-	03/2018		4-5	-	03/2018
	2-6	-	03/2018		3-6		03/2018		4-6	•	03/2018
	2-7	-	03/2018		3-7	2	03/2018		4-7	-	03/2018
	2-8	-	03/2018		3-8	2	03/2018		4-8	-	03/2018
	2-9	2	03/2018		3-9	2	03/2018		4-9	-	03/2018
	2-10	-	03/2018		3-10	2	03/2018		4-10	2	03/2018
					3-11	2	03/2018		4-11	2	03/2018
					3-12	2	03/2018		4-12	2	03/2018
					3-13	2	03/2018		4-13	2	03/2018
					3-14	2	03/2018		4-14	2	03/2018
					3-15	2	03/2018		4-15	2	03/2018
					3-16	2	03/2018		4-16	2	03/2018
					3-17	2	03/2018				
					3-18	2	03/2018				
					3-19	2	03/2018				
					3-20	2	03/2018				

Section	Page	Revision	Date of Issue	Section	Page	Revision	Date of Issue	Section	Page	Revision	Date of Issue
5	5-1	1	03/2018	6	6-1	1	03/2018	7	7-1	-	03/2018
	5-2	I	03/2018		6-2	1	03/2018		7-2	I	03/2018
	5-3	2	03/2018		6-3	1	03/2018		7-3	-	03/2018
	5-4	2	03/2018		6-4	1	03/2018		7-4	-	03/2018
	5-5	-	03/2018		6-5	1	03/2018		7-5	-	03/2018
	5-6	-	03/2018		6-6	1	03/2018		7-6	2	03/2018
	5-7	-	03/2018		6-7	1	03/2018		7-7	-	03/2018
	5-8	-	03/2018		6-8	1	03/2018		7-8	-	03/2018
	5-9	-	03/2018		6-9	1	03/2018		7-9	-	03/2018
	5-10	•	03/2018		6-10	1	03/2018		7-10	-	03/2018
					6-11	1	03/2018				
					6-12	1	03/2018				
					6-13	1	03/2018				
					6-14	1	03/2018				
					6-15	1	03/2018				
					6-16	1	03/2018				

Section	Page	Revision	Date of Issue	Section	Page	Revision	Date of Issue	Section	Page	Revision	Date of Issue
8	8-1	-	03/2018	9	9-1	-	03/2018	10	10-1	-	03/2018
	8-2	-	03/2018		9-2	2	03/2018		10-2	-	03/2018
	8-3	-	03/2018		9-3	2	03/2018		10-3	-	03/2018
	8-4	-	03/2018		9-4	2	03/2018		10-4	-	03/2018
					9-5	2	03/2018				
					9-6	2	03/2018				

INTENTIONALLY LEFT BLANK

Date of Issue: 03/2018 Document No.: SLSA-AOI-5-7-0-US 0-5 Revision: -

INTENTIONALLY LEFT BLANK

Date of Issue: 03/2018 Document No.: SLSA-AOI-5-7-0-US 0-6 Revision: -

0.3 Table of contents

	Section
	0
GENERAL INFORMATION	1
OPERATING LIMITATIONS	2
	3
NORMAL PROCEDURES	4
PERFORMANCE	5
WEIGHT AND BALANCE	6
AIRPLANE AND SYSTEMS DESCRIPTION	7
AIRPLANE HANDLING,SERVICING AND MAINTENA	NCE8
REQUIRED PLACARDS AND MARKINGS	9
SUPPLEMENTS	10

INTENTIONALLY LEFT BLANK

Date of Issue: 03/2018 Document No.: SLSA-AOI-5-7-0-US **0-8** Revision: -

SECTION 1

1 General Information

- 1.1 Introduction
- 1.1.1 Certification
- 1.2 Warnings, cautions and notes
- 1.3 Descriptive data
- 1.3.1 Aircraft description
- 1.3.2 Power plant
- 1.3.3 Aircraft dimensions
- 1.3.4 Aircraft layout
- 1.4 Definitions and abbreviations
- 1.5 Summary of performance specifications

1.1 Introduction

This Aircraft Operating Instructions have been prepared to provide the pilots, instructors, owners and operators with information for safe and efficient operation of BRISTELL aircraft. It also contains supplemental data supplied by the Aircraft Flight Training Supplement.

It is the pilot's responsibility to be familiar with this handbook, the special characteristics of this aircraft, and all other information and legal requirements relevant for the operation in his country. The pilot is responsible to determine the aircraft is safe for flight, and to operate the aircraft with respect to the procedures and limitations provided in this manual.

It is the owner's/operator's responsibility to have the aeroplane registered and insured, according to country-specific regulations. The aircraft owner/operator is also responsible for maintaining the aircraft in airworthy condition.

1.1.1 Certification

BRISTELL LSA is a light sport category airplane made in **BRM AERO** s.r.o., Uherske Hradiste, Czech Republic, based on the following airworthiness requirements:

- ASTM Consensus Standards:
 - F2245
 - F2279

F2295

and other to LSA category applicable ASTM Consensus Standards.

- Czech LAA UL-2 Standards
- EASA CS-VLA Standards

1.2 Warnings, cautions and notes

The following definitions apply to warnings, cautions and notes in the Pilot Operating Handbook.

WARNING

Means that the non-observation of the corresponding procedure leads to an immediate or important degradation of the flight safety i.e. to injury or death of persons.

CAUTION

Means that the non-observation of the corresponding procedure leads to a minor or possible long term degradation of the flight safety.

NOTE

Draws attention to any special item not directly related to safety, but which is important or unusual.

1.3 Descriptive data

1.3.1 Aircraft description

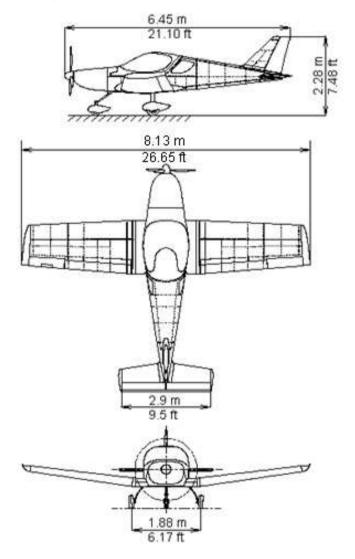
BRISTELL LSA is an airplane intended especially for recreational and cross-country flying, basic flight training, with limitation to non-aerobatics operation.

BRISTELL LSA is a single-engine, all metal, low-wing monoplane of semimonocoque construction with two side-by-side seats. The airplane is equipped with a fixed tricycle undercarriage with steerable nose wheel.

1.3.2 Power plant

The standard power plant is composed of ROTAX 912 ULS, 4-cylinder, 4stroke engine and FITI three blade ground adjustable propeller. **Bristell LSA. S/N 357/2018** is fitted with:

- Rotax 912 iS Sport engine
- DUC Inconel FLASH propeller, composite, 3-bladed, on-ground adjustable.


1.3.3 Aircraft dimensions

Wing span8.13	m	26.65	ft
Length6.45	m	21.10	ft
Height2.28	m	7.48	ft
Wing area10.5	m ²	113.02	sq ft
Wing loading			
Design MTOW 600 kg57.14	kg/m²	11.68	lb/sq ft
Cockpit width1.3	m	51.17	in
Deflections:			
Rudder deflections			
Elevator deflections+ 30°/-15°			
Aileron deflections+ 24°/-17°			
Flap deflections0°, 10°, 20° and 30°			
Aileron trim deflections+ 15°/- 20°			
Elevator trim deflections+ 10°/- 25°			

1.3.4 Aircraft layout

Revision: -

1.4 Definitions and abbreviations

°F	temperature in degree of Fahrenheit
ASI	Airspeed Indicator
ATC	Air Traffic Control
BEACON	anti-collision beacon
CAS	Calibrated Airspeed
CG	Center of Gravity
COMM	communication transmitter
ECU	Engine Control Unit
EFIS	Electronic Flight Instrument System
ELT	Emergency Locator Transmitter
E-LSA	Experimental Light Sport Aircraft
EMS	Engine Monitoring System
ft	foot / feet
ft/min	feet per minute
GPS	Global Positioning System
hp	power unit
IAS	Indicated Airspeed
IC	Intercom
IFR	Instrument Flight Rules
in	inch
ISA	International Standard Atmosphere
knot	NM per hour
lb	pound
LAA	Light Aircraft Association of the Czech Republi
MAC	Mean Aerodynamic Chord
max.	maximum
min.	minimum or minute

statute miles per hour
Nautical Mile
Outside Air Temperature
system is switched off or control element is in off-position
system is switched on or control element is in on-position
Pilot Operating Handbook
pound per square inch - pressure unit
revolutions per minute
second
volume unit
maneuvering airspeed
maximum flap extended speed
Visual Flight Rules
Visual Meteorological Conditions
never exceed speed
maximum designed cruising speed
stall speed with wing flaps in retracted position
stall speed with wing flaps in extended position
best angle of climb speed
best rate of climb speed

1.5 Summary of performance specifications

Performance	US units	Metric units			
Gross weight (Maximum tak	1320 lb	600 kg			
Top speed at sea level	MCP: 5500 rpm	120 KCAS	222 km/h CAS		
Cruise speed at sea level	75%: 5000 rpm	108 KCAS	201 km/h CAS		
Cruise speed at sea level	65%: 4800 rpm	103 KCAS	190 km/h CAS		
Full fuel range at 4000 ft pre at 75 % MCP (5000 rpm), No		650 NM	1210 km		
Rate of climb at sea level	Vx	860 fpm at 60 KIAS	860 fpm at 112 km/h IAS		
Rate of climb at sea level	910 fpm at 67 KIAS	910 fpm at 125 km/h IAS			
Stall speed V _{s1} (flaps retract	ed)	45 KCAS	83 km/h CAS		
Stall speed V _{so} (flaps fully ex	xtended)	38 KCAS	71 km/h CAS		
Total fuel capacity		31.7 US gal	120 liters		
Total usable fuel		31.4 US gal	119 liters		
Approved types of fuel ATTENTION: Obey the lates Instruction SI-912-016, for th correct fuel.	Min. RON 95 (min. AKI4 91) Mogas: EN 228 super Mogas: EN 228 super plus				
Engine Maximum takeoff p	AVGAS 100LL 73.5 kW (100 HF	, ,			
Engine Maximum continuo	72 kW (97.9 HP) at 5500 rpm				
Engine Cruising power 75 %	54 kW (73.4 HP) at 5000 rpm				
Engine Cruising power 65 %	Engine Cruising power 65 % of MCP				
Engine Cruising power 50 %	of MCP	35.9 kW (48.8 HP) at 4300 rpm			

SECTION 2

- 2 **Operating Limitation**
- 2.1 Introduction
- 2.2 Airspeed
- 2.3 Airspeed indicator markings
- 2.4 Power plant
- 2.4.1 Engine operating speeds and limits
- 2.4.2 Fuel
- 2.4.3 Oil
- 2.4.4 Coolant
- 2.5 Power plant instrument markings
- 2.6 Miscellaneous Instrument Marking
- 2.7 Weight
- 2.8 Center of gravity
- 2.9 Approved maneuvers
- 2.10 Maneuvering load factors
- 2.11 Crew
- 2.12 Kinds of operation
- 2.13 Other limitations

2.1 Introduction

Section 2 includes operating limitations, instrument markings and basic placards necessary for the safe operation of the aircraft, its engine, standard systems and standard equipment.

2.2 Airspeed

Airspeed limitations and their operational significance are shown below:

	Speed	KIAS	IAS (km/h)	Remarks
V _{NE}	Never exceed speed	157	290	Do not exceed this speed in any operation.
V _{NO}	Max. structural cruising speed	129	240	Do not exceed this speed except in smooth air, and then only with caution.
V _A	Mane uvering speed	96	180	Do not make full or abrupt control movement above this speed, because under certain conditions full control movement may overstress the aircraft.
V _{FE}	Maximum Flap Extended Speed	75	139	Do not exceed this speed with flaps extended.

2.3 Airspeed indicator markings

Airspeed indicator markings and their color-code significance are shown below:

Marking	IAS value	e or range	Significance		
Ivia King	knots	km/h	Significance		
White arc	37-75	70-139	Flap Operating Range.		
Green arc	44-129	82-240	Normal Operating Range.		
Yellow arc	129-157	240-290	Maneuvers must be conducted with caution and only in smooth air.		
Red line	157	290	Maximum speed for all operations.		

2.4 Power plant

2.4.1 Engine operating speeds and limits

Engine Model	:	ROTAX 912 iS Sport	
Engine Manufacturer:		Bombardier-Rotax GMBH	
Max Take-off:		73.5 kW (100 HP) at 5800 rpm, max.5 min.	
Power	Max. Continuous:	72 kW (97 HP) at 5500 rpm	
	Cruising 75%:	54.0 kW (73.4 HP) at 5000 rpm	
	Max. Take-off:	5800 rpm (max. 5 min)	
Engine	Max. Continuous:	5500 rpm	
speed	Cruising 75%:	5000 rpm	
	Idling:	min 1400 rpm	
• • •	Minimum:	-	
Coolant temperature	Maximum:	120 °C <i>(</i> 248 °F)	
-	Optimum:	80 – 110 °C <i>(176 - 230 °F)</i>	
.	Minimum:	50 °C (120 °F)	
Oil temperature	Maximum:	130 °C (266 °F)	
-	Normal operating:	90 – 110 °C <i>(190 – 230 °F)</i>	
0"	Minimum:	0.8 bar (12 psi) - below 3500 rpm	
Oil pressure:	Maximum:	7 bar (<i>102 psi)</i> - For a short period at cold start	
	Normal:	2 - 5 bar (29-73 psi) - above 3500 rpm	
Exhaust gas temp.	Maximum:	950 °C (1742 °F)	
Fuel	Maximum:	3.2 bar (46.5 psi)	
pressure	Minimum:	2.8 bar <i>(40.5 psi)</i>	
	Maximum in flight:	60 °C (140 °F) (manifold temperature)	
Ambient temperature	Maximum at start:	50 °C (120 °F) (ambient temperature)	
•	Minimum at start:	-20 °C (-13 °F) (oil temperature)	

2.4.2	Fuel		
	General note	NOTICE	Obey the latest edition of Service Instruction SI-912 i-001 for the selection of the correct fuel.
		NOTICE	Use only fuel suitable for the respective cli- matic zone.
			Risk of vapour formation if using winter fuel for summer operation.
	Antiknock proper-	Fuels with following	g specification can be used:
	ties	Fu	uel specification
			Usage/Description
		Anti-knock proper	rties 912 i Series
			Min. RON 95
		f	tuels according to ASTM D4814 and/or uels with RON instead of AKI (Anti Knock In- dex) specifications, following AKI value has to be observed: min. AKI 91
	MOGAS		
			Usage/Description
		MOGAS	912 i Series
		European standard	EN 228 Super
			EN 228 Super plus
	AVGAS	high lead content a	ces greater stress on the valve seats due to its and forms increased deposits in the combustion sediments in the oil system.
			Usage/Description
		AVGAS	912 i Series

	Usage/Description
AVGAS	912 i Series
Aviation Standard	AVGAS 100 LL (ASTM D910)

Fuel volume:

Wing fuel tank volume2x60	Ι	2x16	US gal
Unusable fuel quantity2x0.5	Ι	2x0.13	US gal

2.4.3 Oil

	NOTICE At the selection of suitable lubricants refer to the additional information in the Service Information SI-912 i-001, latest edition.
Oil consumption	Max. 0.06 l/h (0.13 liq pt/h).
Oil specification	- Use only oil with API classification "SG" or higher!
	 Due to the high stresses in the reduction gears, oils with gear additives such as high performance motor cycle oils are requi- red.
	 Because of the incorporated overload clutch, oils with friction modifier additives are unsuitable as this could result in clutch slippage during normal operation.
	 Heavy duty 4-stroke motor cycle oils meet all the require- ments. These oils are normally not mineral oils but semi- or full synthetic oils.
	 Conventional aircraft oils (a.d.= ashless dispersant) are not suitable. Oils with ashless dispersant do not have suitable cleaning agents for modern designs such as the ROTAX 912 i Series.
	- Oils primarity for Diesel engines have insufficient high tem- perature properties and additives which favour clutch slipping, and are generally unsuitable.
Type of oil use Supplement No	d by aircraft manufacturer is shown in Section 10

Maximum3.6	I	0.951	US gal
------------	---	-------	--------

2.4.4 Coolant

General note

	NOTICE SI-	ey the latest edition of Service Instruction 912 i-001 for the selection of the correct plant.
Conventional coolant		nixed with water has the advantage of a capacity than water-less coolant.
Application	· · · ·	, there is sufficient protection against vapor ing or thickening of the coolant within the
	Use the coolant specifi	ed in the manufacturers documentation.
Mixture	NOTICE	ey the coolant manufacturers instructions out the coolant mixture.
		mixture ratio %

mixture	e ratio %
concentrate	water
50	50
	concentrate

NOTE Type of coolant used by aircraft manufactu Supplement No.2.	irer is shown in	Section 10
Coolant liquid volume:		
It is about2.5	l 0.66	US gal

2.5 Power plant instrument markings

Analogue engine instruments markings and their color-code significance are shown below.

Rotax 912 iS Sport	Minimum Limit (red line)	Normal Operating Range (green arc)	Caution Range (yellow arc)	Maximum Range (red line)
Engine speed [RPM]	1400	1400-5500	5500-5800	5800
Oil Temperature	50 °C (120 °F)	50 – 110 °C (120 – 230 °F)	110 – 130 °C (230 – 266 °F)	130 °C (266 °F)
Exhaust Gas Temp. (EGT)	-	800 – 850 °C (1472 – 1562 °F)	850 – 950 °C (1562 - 1742 °F)	950 °C (1742 °F)
Coolant Temperature (CT)	50 °C (122°F)	50-110°C (122-230°F)	110-120 °C (230 - 248 °F)	120 °C (248 °F)
Oil Pressure	0.8 bar (12 psi)	0.8 - 5 bar (12 - 73 psi)	5 - 7 bar (73 - 102 psi)	7 bar (102 psi) cold engine starting

2.6 Miscellaneous Instrument Marking

There is not any miscellaneous instrument marking.

2.7 Weight

Empty weight (standard equipment)325	kg	715 lb	
NOTE			
Actual empty weight is show	vn in		_
Max.take-off weight600	kg	1320 lb	
Max.landing weight600	kg	1320 lb	
Max. weight of fuel (120 I) 87	kg	192 lb	
Max. baggage weight:			
Baggage compartment behind seats15	kg	33 lb	
Wing lockers (optional)20	kg	44 lb each	
Front locker (optional)10	kg	22 lb	

2.8 Center of gravity

Operating C.G. range	25 to 35 % of MAC
MAC53.8	819 in 1367 mm
Datum: Wing leading edge between ribs from plane of symmetry.	s No. 4 and 5, 81.52 in (2071 mm)

2.9 Approved maneuvers

Airplane Category: LSA (Special Light Sport Aircraft) The BRISTELL LSA is approved for normal and below listed maneuvers:

- Steep turns not exceeding 60° bank
- Lazy eights
- Chandelles
- Stalls (except whip stalls)

WARNING

Aerobatics and intentional spins are prohibited!

2.10 Maneuvering load factors

Maximum positive limit load factor+4 g Maximum negative limit load factor- 2 g

2.11 Crew

 Number of seats
 2

 Minimum crew1 pilot in the left seat

 Minimum crew weight
 121

 Ib

 Maximum crew weight
 see SECTION 6

WARNING Do not exceed maximum take-off weight!

2.12 Kinds of operation

There are permitted Day VFR flights, Night VFR flights are permitted with installation of optional Night Lighting Package and operation by an appropriate rated pilot.

WARNING

IFR flights and intentional flights under icing conditions are PROHIBITED!

Minimum instruments and equipment list for VFR flights:

- Airspeed indicator
- Altimeter
- Compass (not required by ASTM F 2245)
- Fuel quantity indicator
- Tachometer (RPM)
- Oil temperature indicator
- Oil pressure indicator
- Cylinder head temperature indicator (Coolant temp indicator)

2.13 Other limitations

WARNING No smoking on board of the aircraft!

Revision: -

SECTION 3

3 EMERGENCY PROCEDURES

3.2 Engine Failure

- 3.2.1 Engine failure during take-off run
- 3.2.2 Engine failure during take-off
- 3.2.3 Engine failure in flight
- 3.3 In-flight Engine Starting

3.4 Smoke and Fire

- 3.4.1 Fire on ground at engine starting
- 3.4.2 Fire on ground with engine running
- 3.4.3 Fire during take-off
- 3.4.4 Fire in flight
- 3.4.5 Fire in the cockpit
- 3.5 Glide
- 3.5.1 Emergency descent
- 3.6 Landing Emergencies
- 3.6.1 Emergency landing
- 3.6.2 Precautionary landing
- 3.6.3 Landing with a flat tire
- 3.6.4 Landing with a defective landing gear.
- 3.7 Recovery from Unintentional Spin

3.8 Other Emergencies

- 3.8.1 Vibration
- 3.8.2 Autopilot malfunction
- 3.8.3 Inadvertent icing encounter
- 3.8.4 Loss of primary instruments
- 3.8.5 Loss of flight controls

3.9 Rotax 912 iS Engine abnormal operation

3.9.1 Fault indicated by the warning lamps

- 3.9.2 Engine not responding to power inputs
- 3.9.3 Occurrence of uncharacteristic and severe engine vibrations
- 3.9.4 Re-Start during flight
- 3.9.5 Failure of the EMS power supply
- 3.9.6 Exceeding max.admissible engine speed
- 3.9.7 Exceeding of max.coolant temperature
- 3.9.8 Exceeding of max.admissible oil temperature
- 3.9.9 Oil pressure below minimum during flight
- 3.9.10 Oil pressure below minimum on ground
- 3.9.11 Oil pressure above permitted range at low ambient temperatures
- 3.9.12 Engine on fire or fire in the engine compartment
- 3.9.13 Fuel pressure outside range
- 3.9.14 Maximum permissible exhaust temperatures exceeded
- 3.9.15 EMS voltage supply below the minimum required level
- 3.9.16 The sprag clutch decouples not from starter
- 3.10 Rotax 912 iS Engine Trouble Shooting
- 3.10.1 Engine does not start
- 3.10.2 Knocking under load
- 3.10.3 Low oil pressure
- 3.10.4 Oil level is increasing
- 3.10.5 Engine hard to start at low temperature

3.1 Introduction

Section 3 provides checklists and amplified procedures for coping with various emergencies that may occur. Emergencies caused by aircraft or engine malfunction are extremely rare if proper pre-flight inspections and maintenance are practiced.

However, should an emergency arise, the basic guidelines described in this section should be considered and applied as necessary to correct the problem.

3.2 Engine Failure

- 3.2.1 Engine failure during take-off run
 - 1. Throttle reduce to idle
 - 2. Ignition (LANE A,B) switch off
 - 3. Apply brakes
- 3.2.2 Engine failure during take-off

1.	Speed	-	gliding at 120 km/h (65 KIAS)
2.	Altitude	-	below 150 ft: land in take-off direction
		-	over 150 ft: choose a landing area
3.	Wind	-	find direction and velocity
4.	Landing area	-	choose free area without obstacles
5.	Flaps	-	extend as needed
6.	Fuel Selector	-	shut off
7.	Ignition (LANE A,B)	-	switch off
8.	Safety harness	-	tighten
9.	Master switch	-	switch off before landing
10. Land			

3.2.3 Engine failure in flight

2. Speed

4. Wind

- 1. Push control stick forward
 - gliding at 120 km/h (65 KIAS)
- 3. Altitude below 150 ft: land in take-off direction
 - over 150 ft: choose a landing area
 - find direction and velocity
- 5. Landing area choose free area without obstacles
- 6. Flaps extend as needed
- Fuel Selector
- 8. Ignition (LANE A,B) switch off
 - tighten

- shut off

- Safety harness
 Master switch
- switch off before landing
- 11. Land

3.3 In-flight Engine Starting

Engine Stop

- If the propeller continues to rotate during flight by windmilling, but the speed is not sufficient to start the engine, the electric starter can be used without problems. You must not wait until the propeller stands still.
- 2. Electric pumps ON
- 3. Fuel Selector switch to second fuel tank
- 4. Throttle lever to idling position
- 5. EMS main switch AUTO
- 6. LANE select switch A ON
- 7. LANE select switch B ON
- 8. Start power switch switch ON
- 9. Starter button press until the engine starts to run
- 10. Start power switch switch off after 15 sec.

WARNING

Do not try to re-start the engine in the case, that the reason for the engine stop was empty fuel tank!

3.4 Smoke and Fire

- 3.4.1 Fire on ground at engine starting
 - 1. Starter keep in starting position
 - 2. Fuel Selector close
 - 3. Throttle full power
 - 4. Ignition (LANE A,B) switch off
 - 5. Leave the airplane
 - 6. Extinguish fire by a fire extinguisher (if available) or call for a firebrigade if you cannot do it.
 - 7. Locate the cause of fire and resolve the error before next flight by qualified staff (authorized by the Aviation Authorities).
 - 8. An entry in the logbook must be made.
 - 9. A maintenance inspection should be carried out.
- 3.4.2 Fire on ground with engine running
 - 1. Heating close
 - 2. Fuel selector close
 - 3. Throttle full power
 - 4. Ignition (LANE A,B) switch off
 - 5. Leave the airplane
 - 6. Extinguish fire by a fire extinguisher (if available) or call for a firebrigade if you cannot do it.
 - 7. Locate the cause of fire and resolve the error before next flight by qualified staff (authorized by the Aviation Authorities).
 - 8. An entry in the logbook must be made.
 - 9. A maintenance inspection should be carried out.

3.4.3 Fire during take-off

- 1. Speed 120 km/h (65 KIAS)
- 2. Heating close
- 3. Fuel Selector close
- 4. Throttle full power
- 5. Ignition (LANE A,B) switch off
- 6. Land and stop the airplane

- 7. Leave the airplane
- 8. Extinguish fire by a fire extinguisher (if available) or call for a firebrigade if you cannot do it.
- 9. Locate the cause of fire and resolve the error before next flight by qualified staff (authorized by the Aviation Authorities).
- 10. An entry in the logbook must be made.
- 11. A maintenance inspection should be carried out.
- 3.4.4 Fire in flight
 - 1. Heating close
 - 2. Fuel Selector close
 - 3. Throttle full power
 - 4. Master switch switch off
 - 5. Ignition (LANE A,B) switch off
 - 6. Choose of area heading to the nearest airport or choose emergency landing area
 - 7. Emergency landing perform according to 3.6
 - 8. Leave the airplane
 - 9. Extinguish fire by a fire extinguisher (if available) or call for a firebrigade if you cannot do it.
 - 10. Locate the cause of fire and resolve the error before next flight by qualified staff (authorized by the Aviation Authorities).
 - 11. An entry in the logbook must be made.
 - 12. A maintenance inspection should be carried out

NOTE

Engine will stop immediately after master switch switched off.

WARNING

Do not attempt to re-start the engine!

- 3.4.5 Fire in the cockpit
 - 1. Master switch - switch off
 - 2. Heating - close
 - 3. Use a fire extinguisher (if available).
 - 4. If not land a leave the airplane as soon as possible

Glide 3.5

An example of the use of gliding is in the case of engine failure

1. Speed - recommended gliding speed 120 km/h

(65 KIAS)

3.5.1 Emergency descent

Emergency descent means to get on the ground as guickly as possible. It is used in case of a big problem encountered in flight like engine fire, smoke in the cockpit, or any other serious problem.

- 1. Throttle lever - fully pulled to set idle
- 2. Flaps - retracted
 - push forward to bring airplane into descent
- 4. Speed

3. Control stick

- V_{NO} 129 KIAS (240 km/h) Do not exceed this speed except in

smooth air, and then only with caution.

- VNE 157 KIAS (290 km/h)

Do not exceed this speed in any operation.

Steep spiral dive with max. 60° bank may be used however be carefull to not exceed limit load factor during spiral. You can monitor area below you during a spiral.

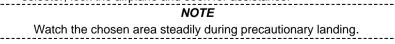
3.6 Landing Emergencies

3.6.1 Emergency landing

4. Flaps

Emergency landings are generally carried out in the case of engine failure and the engine cannot be re-started.

1. Speed - adjust for optimum gliding 120 km/h


(65 KIAS)

- 2. Trim adjust
- 3. Safety harness tighten
 - extend as needed
- 5. COMM report your location if possible
- 6. Fuel Selector close
- 7. Ignition (LANE A,B) switch off
- 8. Master switch switch off
- 9. Perform approach without steep turns and land on chosen landing area.

3.6.2 Precautionary landing

A precautionary landing is generally carried out in the cases where the pilot may be disorientated, the aircraft has no fuel reserve or possibly in bad weather conditions.

- 1. Choose landing area, determine wind direction
- 2. Report your intention to land and land area location.
- Perform low-altitude passage into wind over the right-hand side of the chosen area with flaps extended as needed and thoroughly inspect the landing area.
- 4. Perform circle pattern.
- 5. Perform approach at increased idling with flaps fully extended.
- 6. Reduce power to idle when flying over the runway threshold and touch-down at the very beginning of the chosen area.
- 7. After stopping the airplane switch off all switches, shut off the fuel selector, lock the airplane and seek for assistance.

- 3.6.3 Landing with a flat tire
 - 1. During landing keep the damaged wheel above ground as long as possible using the ailerons control
 - 2. Maintain the direction on the landing roll out, applying rudder control.
- 3.6.4 Landing with a defective landing gear.
 - 1. If the main landing gear is damaged, perform touch-down at the lowest practicable speed and if possible, maintain direction during landing run.
 - 2. If the nose wheel is damaged perform touch-down at the lowest practicable speed and hold the nose wheel above the ground by means of the elevator control as long as possible.

3.7 Recovery from Unintentional Spin

WARNING

Intentional spins are prohibited!

There is no an uncontrollable tendency of the airplane to enter into a spin provided the normal piloting techniques are used.

Unintentional spin recovery technique:

- 1. Throttle idle
- 2. Lateral control ailerons neutralized
- 3. Rudder pedals full opposite rudder
- 4. Rudder pedals neutralize rudder immediately when rotation stops
- 5. Longitudinal control neutralize or push forward and recover dive.

3.8 Other Emergencies

3.8.1 Vibration

If any forced aircraft vibrations appear, it is necessary:

- 1. To set engine speed to such power rating where the vibrations are lowest.
- 2. To land on the nearest airfield or to perform a precautionary landing according to 3.6
- 3.8.2 Autopilot malfunction

In the case, that autopilot starts to not work properly, press immediately red button "AP OFF" on the instrument panel.

WARNING

Take-Off, climb, Approach and landing with AP "ON" or with malfunction AP are PROHIBITED.

3.8.3 Inadvertent icing encounter

WARNING

Intentional flights under icing conditions are PROHIBITED!

If icing is inadvertently encountered then:

- 5. Pitot heat (if installed) ON
- 6. Exit icing conditions change altitude or turn back.
- 7. Cockpit heating pull knob to ON
- 8. Up/Down knob pushed forward (UP) to defrost windshield

3.8.4 Loss of primary instruments

If primary instruments are lost and the aircraft is fitted with the backup instruments then use these to safely complete the flight.

If no backup instruments are installed then visually check the aircraft altitude and attitude and land as soon as practicable.

3.8.5 Loss of flight controls

Loss of control may have several reasons like a failure of the control system, jamming, disconnection, strong turbulence, unrecoverable spin, pilot disorientation, etc.

If loss of a control appears e.g. due to jamming or disconnection, then some control might be still possible:

Lost control	Action
Ailerons	Some degree of roll control is available by using the secondary effect of rudder. Effectivness of rudder may be increased by rapid bursts of power. Aircraft with a jammed aileron can be landed in a slip, preferably against a crosswind.
Elevator	Try to use elevator trim to control airplane longitudinally. Keep in mind that trim control works considerably slower than elevator control. Engine power may be used to pitch up. Before landing, when the airplane will enter ground effect, will be needed to apply a slight nose-up pitch as the airplane enters ground effect. Small shot of power in addition to the trim up may be needed. Wing flap control may be used to pitch down.
Rudder	Some degree of yaw control is available by using the secondary effect of ailerons.
Wing flaps	The flaps are mechanically interconnected and have the electrical control. If the electrical control would fail or if the flaps would jamm in any position, then adjust elevator trim to trim flaps pitching moment. If (in spite of flaps mechanical interconnection) one flap would extend and the aircraft rolls then immediately use the opposite ailerons and rudder to eliminate pitching and rolling moment.

WARNING

If the control cannot be regained and the aircraft is fitted with a ballistic rescue system, then activate the system.

3.9 Rotax 912 iS Engine abnormal operation

WARNING
Non-compliance can result in serious injuries or death!
At unusual engine behaviour conduct checks as per Maintenance
Manual Line Chapter 05-50-00 before next flight
NOTE
Further checks – see Engine Maintenance Manual

3.9.1 Fault indicated by the warning lamps

Warning lamps

NOTE

Reduce engine power setting to the minimum necessary and carry out precautionary landing.

LANE A	LANE B	Action on ground	Action during flight
OFF	Flashing	One way flight to maintenance hangar permissible	Flight is possible to your destination at your own discretion
Flashing	OFF	One way flight to maintenance hangar permissible	Flight is possible to your destination at your own discretion
OFF	ON	Flight not permissible	Land the aircraft
Flashing	Flashing	Flight not permissible	Land the aircraft
Flashing	ON	Flight not permissible	Land the aircraft
ON	OFF	Flight not permissible Land the aircraft	
ON	Flashing	Flight not permissible	Land the aircraft
ON	ON	Flight not permissible	Land the aircraft

ON = permanently on

Landing: Take the next landing oportunity (airfield, airport) at your own discretion.

NOTE

If a warning lamp flashes, it indicates an error with lower severity (Fault) that has been detected by the internal testing procedures of the ECU. In this case, the ECU continues to operate normally. There will be no transfer of control of the ignition and injection to the error-free LANE. If a warning lamp remains on permanently, it indicates that a fatal error with higher severity (failure) has been detected by the internal testing procedures of the ECU. In this case, the ECU will continue to

operate in an alternative control mode, which will transfer the control of ignition and injection to the error-free LANE.

Regular operation as well as alternative control modes of the ECU are able to represent the full engine power. Differences arise only in the efficiency of the engine.

3.9.2 Engine not responding to power inputs

Engine vibrations

- Possible breakage of throttle valve actuation/linkage.
- Limited flight operation with available power possible.
- A maintenance inspection should be carried out.
- 3.9.3 Occurrence of uncharacteristic and severe engine vibrations
 - If the vibrations occur in conjuction with a loss of power then the engine may only be firing on 3 cylinders.
 - Limited flight operation.
 - A maintenance inspection should be carried out.
- 3.9.4 Re-Start during flight

Engine stop

- If the propeller continues to rotate during flight by windmilling, but the speed is not sufficient to start the engine, the electric starter can be used without problems. You must not wait until the propeller stands still.
- 3.9.5 Failure of the EMS power supply

Failure of the EMS

 If the EMS power supplies (alternator A) fails then the ECU automatically switches one-time over to the second EMS power supply (alternator B).

NOTE No charging of battery!

- While alternator B runs, no power drop is recognizable.
- Failure of both EMS power supplies (alternator A/B) result in engine stoppage.

Remedy: Switch "ON" the **backup battery switch.** In this case the power supply is provided by the aircraft battery.

- Land the aircraft at the next available oportunity.

- A maintenance inspection should be carried out.
- 3.9.6 Exceeding max.admissible engine speed

Exceeding engine speed

- Reduce the engine speed. Any exceeding of the max.admissible engine speedhas to be entered by the pilot into logbook, stating duration and extent of over engine speed.
- 3.9.7 Exceeding of max.coolant temperature

Exceeding coolant temperature

CAUTION

Reduce engine power setting to the minimum necessary and carry out precautionary landing.

- Any exceeding of the max.admissible coolant temperature has to be entered by the pilot into logbook, stating duration and extent of overtemperature condition.
- A maintenance inspection should be carried out.
- Check the ECU error log file.
- 3.9.8 Exceeding of max.admissible oil temperature

Exceeding oil temperature

CAUTION

Reduce engine power setting to the minimum necessary and carry out precautionary landing.

- Any exceeding of the max.admissible oil temperature has to be entered by the pilot into logbook, stating duration and extent of overtemperature condition.
- A maintenance inspection should be carried out.
- Check the ECU error log file.
- 3.9.9 Oil pressure below minimum during flight

Oil pressure too low

CAUTION

Reduce engine power setting to the minimum necessary and carry out precautionary landing.

- Check oil system.
- A maintenance inspection should be carried out.
- Check the ECU error log file.

Date of Issue: 03/2018 Document No.: SLSA-AOI-5-7-0-US 3-15 Revision: -

3.9.10 Oil pressure below minimum - on ground

Oil pressure too low

CAUTION

- Immediately stop the engine and check for reason. Check oil system.
- Check oil quantity in oil tank.
- Check oil quality. See also Chapter 2.4 of the Engine Manual.
- A maintenance inspection should be carried out.
- 3.9.11 Oil pressure above permitted range at low ambient temperatures

Oil pressure too high

- Reduce engine speed and check the oil pressure again once it has reached a higher oil temperature.
- A maintenance inspection should be carried out.
- Check the ECU error log file.
- 3.9.12 Engine on fire or fire in the engine compartment

Engine on fire

WARNING

Carry out emergency procedures as prescribed in 3.6.1Emergency landing.

- After landing locate the cause of fire and resolve the error before next flight by qualified staff (authorized by the Aviation Authorities).
- An entry in the logbook must be made.
- A maintenance inspection should be carried out.
- 3.9.13 Fuel pressure outside range

Exceeding fuel pressure

CAUTION

Reduce engine power setting to the minimum necessary and carry out precautionary landing.

- If the pressure is too high, switch the AUX-pump OFF. If this has no
 effect then limited flight operation with reduced power is possible.
- If the pressure is too low, switch the AUX-pump ON. If this has no
 effect then limited flight operation with reduced power is possible.
- A maintenance inspection should be carried out.

3.9.14 Maximum permissible exhaust temperatures exceeded

Revision: -

Exceeded exhaust temperatures

CAUTION

Reduce engine power setting to the minimum necessary and carry out precautionary landing.

- Check the exhaust temperature
- Oil and coolant limits must not be exceeded.
- A maintenance inspection should be carried out.
- 3.9.15 EMS voltage supply below the minimum required level

Voltage supply below level

- Limited flight operation is possible if the voltage (alternator A or B) is OK here.
- Proceed according to 3.9.5 Failure of the EMS power supply if this has no effect.
- A maintenance inspection should be carried out.

3.9.16 The sprag clutch decouples not from starter

Sprag clutch is permanently in engagement position

CAUTION Switch the engine "OFF". Risk of fire and danger of the electric starter overheating.

- Move the throttle lever to the idle position.
- Set the Master switch to "OFF".
- A maintenance inspection should be carried out.

3.10 Rotax 912 iS Engine Trouble Shooting

Introduction

All checks in accordance with the Engine Maintenance Manual (current issue/revision).

WARNING

Non compliance can result in serious injuries or death! Only qualified staff (authorized by the Aviation Authorities) trained on this particular engine, is allowed to carry maintenance and repair work.

NOTE

If the following hints regarding remedy do not solve the problem, ocntact an authorized workshop. The engine must not be operated until the problem is rectified.

3.10.1 Engine does not start

Possible cause	Remedy
Turn OFF the LANE select witch A/B.	Turn ON the LANE select witch A/B.
Turn OFF the Master switch.	Turn ON the Master switch to.
Closed fuel selector/valve.	Open valve or clean filter, alternatively renew filter. Check fuel system for leakage.
No fuel in tank.	Refuel.
Fuel pumps	Set both to "ON".
Starting speed too low, faulty or discharged battery.	Fit fully charged battery.
Starting speed too low, starting problems on cold engine.	Use top quality, low friction oil; allow for sufficient cooling period to counter for performance drop on hot starter; preheat engine.
Wrong fuel (Jet fuel or Diesel)	Change of fuel

3.10.2 Knocking under load

Possible cause	Remedy
Octane rating of fuel too low.	Use fuel with higher octane rating.
Intake air temperature too high.	Reduce the power. Check air filter according to Engine Maintenance Manual Line Chapter 12-20-00.

3.10.3 Low oil pressure

Possible cause	Remedy
Not enough oil in oil tank.	Refill oil

3.10.4 Oil level is increasing

Possible cause	Remedy
Oil too cold during engine operation.	Cover oil cooler surface, maintain the oil temperature prescribed.
Contamination with diesel fuel.	Check fuel.

3.10.5 Engine hard to start at low temperature

Possible cause	Remedy	
Staring speed too low.	Preheat engine.	
Low charge battery.	Fit fully charged battery.	
High oil pressure.	At cold start a pressure reading of up to around 7 bar (102 psi) does not indicate a malfunction.	
Oil pressure too low after cold start	Too much resistance in the oil suction system at low temperatures due to cold oil. Stop engine and preheat oil. After a cold start the oil tank must be observed and the pressure should be above 1.5 bar (22 psi). Otherwise, the speed must be lowered again, because not enough cold oil can be sucked. If oil pressure is reading lower than 1 bar (15 psi) oils with lower viscosity are to be used. See SI-912 i-001, current issue.	
NOTE		
Oil pressure must be measured at idle at an oil temperature of minimum 50 °C (120 °F).		
Be sure the oil pressure does not go below minimum at idle		

Be sure the oil pressure does not go below minimum at idle.

SECTION 4

4 NORMAL PROCEDURES

- 4.2 Assembly and Disassembly
- 4.3 Pre-flight Inspection
- 4.4 Normal procedures
- 4.4.1 Before engine starting
- 4.4.2 Engine starting
- 4.4.3 Engine warm up, Engine check
- 4.4.3.1 Engine warm up
- 4.4.3.2 Ignition check
- 4.4.3.3 Check of fuel pumps
- 4.4.4 Taxiing
- 4.4.5 Before take-off
- 4.4.6 Take-off
- 4.4.7 Short field take-off
- 4.4.8 Soft field take-off
- 4.4.9 Climb
- 4.4.10 Cruise
- 4.4.11 Descent
- 4.4.12 Before landing
- 4.4.13 Balked Landing (Go around)
- 4.4.14 Landing
- 4.4.15 Short field landing
- 4.4.16 Soft field landing
- 4.4.17 After landing
- 4.4.18 Engine shutdown
- 4.4.19 Aircraft parking and tie-down
- 4.4.20 Flight in rain

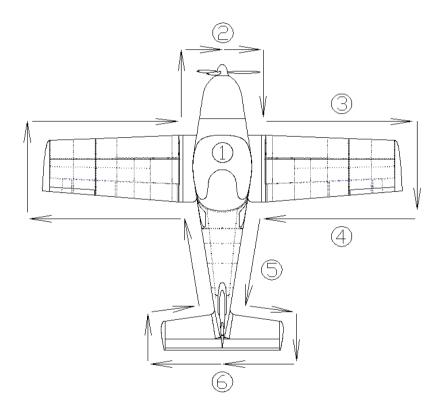
4.1 Introduction

Section 4 provides checklists and recommended procedures for normal operation of the aircraft.

4.2 Assembly and Disassembly

Refer to the BRISTELL LSA Maintenance and Inspection Procedures manual.

4.3 Pre-flight Inspection


Carry out the pre-flight inspection every day prior to the first flight or after airplane assembly. Incomplete or careless inspection can cause an accident. Carry out the inspection following the instructions in the Inspection Check List.

NOTE	
The word "condition" in the instructions means a visual inspection of surface for damage deformations, scratching, chafing, corrosion or ot damages, which may lead to flight safety degradation.	her

The manufacturer recommends carrying out the pre-flight inspection as follows:

Inspection Check List

1	– Ignition (LANE A,B)	- OFF
	 Master switch 	- ON
	 Fuel gauge ind. 	- check fuel quantity
	 Master switch 	- OFF
	 Avionics 	 check condition
	 Control system 	 visual inspection, function, clearance,
		free movement up to stops
		 check wing flaps operation
	 Canopy 	- condition of attachment, cleanness
	 Check cockpit for loose obj 	ects
2	 Engine cowling condition 	
	 Propeller and spinner cond 	
	 Engine mount and exhaust 	
	 Oil and coolant quantity che 	
	 Visual inspection of the fue 	l and electrical system
	 Fuel system draining 	
	 Other actions according to 	the engine manual
3	 Wing surface condition 	
-	 Leading edge condition 	
	 Pitot tube condition 	
4	 Wing tip 	 surface condition, attachment
	– Aileron	- surface condition, attachment,
		clearance,
		free movement
	– Flap	- surface condition, attachment,
		clearance
5	 Landing gear 	- wheel attachment, brakes,
		condition and pressure of tires
		elage bottom surface condition
6	 Vertical tail unit 	 condition of surface, attachment, free
		movement, rudder stops
	 Horizontal tail unit 	 condition of surface, attachment, free
		movement, elevator stops
		e fuselage and wing is the same as on right
	side	

Rotax 912 iS Daily Checks:

Step	Procedure	
1	Verify coolant level in the expansion tank, replenish as required up to the top. The max.coolant level must flush with the bottom of filler neck.	
2	Verify coolant level in the overflow bottle, replenish as required. The coolant level must be between max. and min. mark.	
3	Turn propeller slowly by hand in direction of engine rotation several times and observe engine for odd noises or excessive resistance and normal compression.	
4	Verify free movement of throttle valve and the complete range.	
5	Inspect exhaust system for damages, leakage and general condition.	
6	Visually inspect sensors/wiring harness for mechanical and thermal damages.	
7	Check for any oil, coolant, and fuel leaks. If leaks are evident, rectify and repair them before next flight.	
8	Check oil level and add oil if necessary. The oil level should be in the upper half (between the "50%" and the "max" mark and should never fals below the "min mark. Prior to long flights oil should be added so that the oil level reaches the "max" mark.	

WARNING

Visually check fuel level in each tank before each take-off to be sure that you have sufficient fuel quantity for the planned flight.

CAUTION

In case of long-term parking it is recommended to turn the engine several times (Master switch and LANE A,B OFF!) by turning the propeller. Always handle the blade area by the palm i.e. do not grasp only the blade edge. It will facilitate engine starting.

4.4 Normal procedures

4.4.1 Before engine starting

1.	Control system	 free & correct movement
----	----------------	---

- 2. Canopy clean
- 3. Brakes fully applied
- 4. Safety harness tighten
- 5. Rudder pedals set to required position

WARNING

Adjusting of rudder pedals position during flight is PROHIBITED.

4.4.2 Engine starting

Follow engine Operators manual for Engine start procedure:

Unc	w engine Operators m	anual for Lingine Start procedure.	
1.	Fuel Selector	- ON - LEFT or RIGHT FUEL TANK	
2.	Accomplish aircraft s	pecific startup	
		 activate Flight display 	
3.	Master switch	- ON	
4.	Fuel pump	- ON, only use one fuel pump. Using both	
		fuel pumps can lead to a bad start	
		behaviour.	
5.	Lane select switch A	- ON	
	Lane select switch B	- ON	
6.	Start Power switch	- Activate it during steps 7,8,9, and 10	
7.	Warning lamps	- check if illuminate and extinguish after	
		around 3 sec. If not, consult Engine	
		Manual Chapter 4.	
8.	Fuel pressure	 check whether it reached 3 bar 	
9.	Throttle	 put throttle 1-2 cm of its opening 	
10	. Start button	- press until engine runs and release after	
		engine has reached 1500 rpm or more	
		(stable run)	
11	. Starter power switch	- OFF after 15 sec, just the engine reached	
		min. 1600 rpm. Activate starter for max. 10)
		sec, then wait 2 minutes for cooling.	
12	. Throttle	- reduce throttle valve position as required	

13. Engine instruments compliance

- check warning lamps and ensure with engine operating limits. Monitor oil pressure which should rise within 10 sec. RPM increase is only permitted at steady oil pressure above 3 bar.
- 14. Throttle Increase engine speed above 2500 rpm and hold it for 5 sec.
- 15. Engine instruments compliance
 - check warning lamps and ensure with engine operating limits.

CAUTION

The starter should be activated for a maximum of 10 sec., followed by 2 min. pause for engine cooling.

As soon as engine runs, adjust throttle to achieve smooth running at approx. 2000 rpm. Check the oil pressure, which should increase within 10 sec. Increase the engine speed after the oil pressure has reached 3 bar (43 psi) and is steady.

To avoid shock loading, start the engine with the throttle lever set for idling or 10% open at maximum, then wait 3 sec to reach constant engine speed before new acceleration.

Only one ignition (LANE Aor B) should be switched on (off) during ignition circuit check.

4.4.3 Engine warm up, Engine check

4.4.3.1 Engine warm up

Prior to engine check block the main wheels using chocks. Initially warm up the engine to 2000 rpm for approx. 2 minutes, then continue to 2500 rpm till oil temperature reaches 50 °C (122 °F). The warm up period depends on ambient air temperature.

Switch "ON" propeller control and check propeller adjustment in all adjustment range.

4.4.3.2 Ignition check

Check both ignition circuits at 4000 rpm.

If the engine speed drops or any error messages are present from the EMS then find out what the cause is and take corresponding action to rectify the problem.

	problem.	
	1. Engine speed -	4000 rpm
	2. Lane A selector switch-	OFF. Observe the rev counter.
		The speed drop may not exceed 180 rpm.
	3. Lane A selector switch-	ON
	4. Lane B selector switch-	OFF. Observe the rev counter.
		The speed drop may not exceed 180 rpm.
	5. Lane B selector switch-	ON
	6. Reduce to idle speed	
		NOTE
	Only one ignition (LANE A c ignition circuit check.	r B)should be switched on (off) during
.4.3.3	Check of fuel pumps	
	1. Engine speed -	set to 2000 rpm
	2. Aux fuel pump -	deactivate for 5 sec
	3. Fuel pressure -	check
	4. Aux fuel pump -	activate
	5. Main fuel pump -	deactivate for 5 sec
	6. Fuel pressure -	check. If not within limits, find cause.
		Do not continue in operation until cause is
		find and problem rectified.
	7. Set max. power for verifi	cation of max. speed with given propeller
	•	(temperatures and pressures).
		idling to max. power. If necessary, cool the
	engine at 3000 rpm befo	re shutdown.
		CAUTION
	The engine check should h	e performed with the aircraft heading upwind

The engine check should be performed with the aircraft heading upwind and not on a loose terrain (the propeller may suck grit which can damage the leading edges of blades).

4.4.4 Taxiing

Apply power and brakes as needed. Apply brakes to control movement on ground. Taxi carefully when wind velocity exceeds 20 knots (10 m/s). Hold

the control stick in neutral position, or in a position that properly deflects a crosswind.

4.4.5 Before take-off

1. Altimeter	- set
2. Trim	- set neutral position
3. Control system	- check free movement
Cockpit canopy	- closed
5. Safety harness	- tighten
6. Fuel Selector	- ON (LEFT or RIGHT tank)
AIRCRAFT IS FOUIPPE	NOTE D WITH RETURN LINES IN BOTH FUEL
TANKS.	
7. Ignition (LANE A,B)	- ON
8. El. pumps	- ON
9. Propeller control	- ON
10. Wing flaps	- extend as needed
11. Autopilot	- OFF

446 Take-off

- 1. Brakes - apply to stop wheel rotation
- 2. Take-off power - throttle fully forward
- 3. Engine speed
- 4. Instruments
- check rpm - check if within limits
- 5. Nose wheel unstick 55 km/h (30 KIAS)
- 6. Airplane lift-off
- 75 km/h (40 KIAS)
- 7. Wing flaps - retract when speed of 120 km/h (65 KIAS) is reached, at altitude of 150 ft
- 8. Make transition to climb

WARNING

The Take-off is prohibited if:

- The engine is running unsteadily
- The engine instruments values are beyond operational limits
- The crosswind velocity exceeds permitted limits (see 5.2.8)
- Autopilot is "ON"

447 Short field take-off

- 1. Use all available runway
- 2. Heading - set
- 3. Flaps - 30°
- 4. Trim as required
- 5. Hold brakes
- 6. Throttle - fully forward (5800 rpm, max. 5min.)
- 7. Engine instruments - check within limits
- 8. Release brakes after rpm increase
- 9. Accelerate and pull control stick aft to lift off the nose wheel as soon as possible.
- 10. As aircraft becomes airborne, level off in ground effect to accelerate to:
 - No obstacle: Vy (best rate of climb) 67 KIAS (125 km/h)
 - Obstacle: Vx (best angle of climb) 60 KIAS (112 km/h) - set to 10°
- 11. Flaps
- 12. Climb at:

No obstacle:	Vy (best rate of climb)	67 KIAS (125 km/h)
Obstacle:	Vx (best angle of climb)	60 KIAS (112 km/h)
13. Trim	- adjust	
14. Flaps	 retract at Vy 67 KIAS (125 km/h)
	or at 150 ft	

4.4.8 Soft field take-off

6. Throttle

7. Control stick

- 1. Inspect field condition checking for grass height, bumps, holes, debris, wetness,
- 2. Taxiing - control stick fully aft
- 3. Heading - set
- 30° 4. Flaps
- 5. Trim - as required
 - fully forward (5800 rpm, max. 5min.)
 - full aft pressure during T/O run to lift off nose wheel as soon as possible.
- 8. As aircraft becomes airborne, level off in ground effect to accelerate to. No obstacle: Vv (best rate of climb) 67 KIAS (125 km/h)

Obstacle:	Vx (best angle of climb)	60 KIAS (112 km/h)
Flaps	- set to 10°	

- 10. Climb No obstacle: Vy (best rate of climb) 67 KIAS (125 km/h) Vx (best angle of climb) 60 KIAS (112 km/h) Obstacle: - adjust
- 11. Trim

9.

- 12. Flaps
- retract at Vy 67 KIAS (125 km/h) or at 150 ft

4.4.9 Climb Best ROC speed Throttle Throttle Max. take-off power (max. 5800 rpm for 5 minutes) Max. cont.power 5500 rpm 3. Trim Instruments oil temperature and pressure, coolant temperature within limits

CAUTION

If coolant or oil temperature approach their limits, reduce the climb angle to increase airspeed and thus fulfill the limits.

4.4.10 Cruise

Avoid operation below normal operation oil temperature 90-110 °C (194-230 °F), as possible formation of condensation water in the lubrication system badly influences the oil quality.

To evaporate possibly accumulated condensation water, at least once a day 100 °C (212 °F) oil temperature must be reached.

1. Aux fuel pump - OFF

Refer to Section 5, for recommended cruising regimes.

4.4.11 Descent

1. Optimum glide speed - 110-120 km/h (60-65 KIAS)

CAUTION

It is not advisable to reduce the engine throttle control lever to minimum on final approach and when descending from very high altitude. In such cases the engine becomes under-cooled and a loss of power may occur. Descent at increased idle (approx. 3000 rpm), speed between 120-1300 km/h (65-70 KIAS) and check that the engine instruments indicate values within permitted limits.

4.4.12 Before landing

- 1. Approach speed 110 km/h (60 KIAS)
- 2. Throttle as needed
- 3. Electric fuel pump(s) ON
- 4. Wing flaps extend as needed
- 5. Trim as needed
- 6. Autopilot OFF

4.4.13 Balked Landing (Go around)

- 1. Throttle full power (max.5800 rpm)
- 2. Wing flaps extend as needed
- 3. Trim adjust as needed
 4. Wing flaps retract at height of 150 ft aft
 - ing flaps retract at height of 150 ft after reaching 120 km/h (65 KIAS)
- 5. Trim adjust
- 6. Repeat circuit pattern and landing

4.4.14 Landing

- 1. Touch-down on main wheels
- 2. Apply brakes as needed after the nose wheel touch-down

4.4.15 Short field landing

Aircraft Operating Instructions

1. Fuel selector select proper tank 2. Safety harness check that tightened 3. Approach speed - 55 KIAS (100 km/h) 4. Glide path – just enough to clear obstacle at approach end of runway 5 Throttle - as required 6. Electric fuel pump - ON - 30° 7. Flaps 8. Trim - as required 9. Landing light(s) - ON 10. Flare - minimum float 11. After touchdown - stick forward - Retract flaps - Maximum braking 4.4.16 Soft field landing 1. Fuel selector - select proper tank 2. Safety harness check that tightened 3. Approach speed - 59 KIAS (110 km/h) 4. Throttle - as required 5. Electric fuel pump - ON - 20° 6. Flaps 7. Trim - as required 8. Landing light(s) - on 9 Flare - add power before touchdown to keep elevator effective to help keep weight off nose wheel 10. After touchdown - throttle to idle gradually increase back elevator to keep weight of nosewheel No braking during roll out 4.4.17 After landing 1. Engine speed - set as required for taxiing

2. Wing flaps - retract

4.4.18 Engine shutdown

Normally the cooling down of the engine during descending and taxiing will be sufficient to allow ECU to be shut off as soon as the aircraft is stopped. At increasing operating temperatures make an engine cooling run of at least minimum 2 minutes.

- 1. Engine instruments within limits
- 2. Engine speed idle
- 3. Avionics switch off
- Ignition LANE B switch off
- 5. Ignition LANE A switch off
- 6. Fuel pumps switch off
- 7. Propeller control switch off
- 8. Circuit breakers switch off
- 9. Master switch switch off

CAUTION

Rapid engine cooling should be avoided during operation. This happens above all during aircraft descent, taxiing, low engine rpm or at engine shutdown immediately after landing.

Under normal conditions the engine temperatures stabilize during descent, taxiing and at values suitable to stop engine by switching the ignition (LANE A,B) off. If necessary, cool the engine at 2500 - 2750 rpm to stabilize the temperatures prior to engine shut down.

4.4.19 Aircraft parking and tie-down

- 1. Ignition check OFF
- 2. Master switch check OFF
- 3. Fuel selector OFF
- 4. Parking brake use it as necessary (if installed)
- 5. Canopy close, lock as necessary
- 6. Secure the airplane

NOTE

It is recommended to use parking brake (if installed) for short-time parking only, between flights during a flight day. After ending the flight day or at low temperatures of ambient air, do not use parking brake, but use the wheel chocks instead.

NOTE

Use anchor eyes on the wings and fuselage rear section to fix the airplane. Move control stick forward and fix it together with the rudder pedals. Make sure that the cockpit canopy is properly closed and locked. The anchoring before leaving the airplane is important if the airplane is not equipped with a parking brake.

4.4.20 Flight in rain

When flying in the rain, no additional steps are required. Aircraft qualities and performance are not substantially changed. However Visual Meteorological Condition (VMC) must be maintained.

SECTION 5

5 PERFORMANCE

- 5.1 Introduction
- 5.2 Performance
- 5.2.1 Airspeed indicator system calibration
- 5.2.2 Stall speeds
- 5.2.3 Take-off performance
- 5.2.4 Landing distances
- 5.2.5 Climb performance
- 5.2.6 Cruise
- 5.2.7 Endurance and Range
- 5.2.8 Demonstrated crosswind performance
- 5.2.9 Optimum glide speed
- 5.2.10 Ceiling

5.1 Introduction

Section 5 provides data for airspeed calibration, stall speeds, take-off performance and additional information.

The presented data has been computed from actual flight tests with the aircraft and engine in good conditions and using average piloting techniques.

If not stated otherwise, the performance stated in this section is valid for maximum take-off weight and under ISA conditions.

The performance shown in this section is valid for aircraft fitted with given power plant - ROTAX 912 iS SPORT engine and DUC Inconel Flash propeller.

5.2 Performance

5.2.1 Airspeed indicator system calibration

	KIAS	KCAS]]	IAS	CAS
				(km/h)	(km/h)
	35	36		65	66
VS0	37	38	VS0	70	71
	40	41	-	80	81
VS1	44	45	VS1	82	83
	50	51		90	91
	55	55		100	101
	60	60		110	111
	65	65		120	120
	70	70		130	130
VFE,	75	75	VFE	139	139
	80	80		150	150
	85	85		160	160
	90	90		170	170
VA	96	96	VA	180	179
	100	100		190	189
	105	105		200	199
	110	109		210	209
	115	114		220	203
	120	119		230	219
	125	124	VN0	230	238
VN0	130	129	V110	250	248
	135	134		260	258
	140	139			
	145	144		270 280	268 278
	150	149			-
VNE	157	156	VNE	290	287

5.2.2 Stall speeds

Conditions:	Wing	KIAS	KCAS	IAS	CAS	Altitude loss
Max.takeoff-off weight 1320 Ib	flaps pos.			[km/h]	[km/h]	at recovery
Engine idle run	_					[ft]
	0°	44	45	82	83	100
Wing level stall	20°	42	43	78	79	120
	30°	37	38	70	71	160
Co-ordinated	0 °	47	48	88	89	120
turn	20°	45	46	84	85	160
30° bank	30°	40	41	75	76	200

5.2.3 Take-off performance

ISA Con	ISA Conditions			CONCRETE		ASS
Airport altitude H [ft]	Temperature tH [°C]	Temperature tH [°F]	Takeoff Run [ft]	Distance over 50 ft obstacle [ft]	Takeoff Run [ft]	Distance over 50 ft obstacle [ft]
0 ft ISA	15,0	59	660	1500	920	1760
2000 ft ISA	11,0	52	740	1690	1040	1980
4000 ft ISA	7,1	45	840	1900	1170	2230
6000 ft ISA	3,1	38	940	2150	1320	2520
8000 ft ISA	-0,8	30	1070	2430	1490	2850
10000 ft ISA	-4,8	23	1210	2750	1690	3230

ISA + 1	10 °C	CONCRETE		GRASS		
Airport altitude H [ft]	Temperature tH [°C]	Temperature tH [°F]	Takeoff Run [ft]	Distance over 50 ft obstacle [ft]	Takeoff Run [ft]	Distance over 50 ft obstacle [ft]
0 ft ISA	25,0	77	710	1610	980	1880
2000 ft ISA	21,0	70	800	1810	1110	2120
4000 ft ISA	17,1	63	900	2040	1250	2390
6000 ft ISA	13,1	56	1010	2310	1410	2710
8000 ft ISA	9,2	48	1150	2610	1600	3060
10000 ft ISA	5,2	41	1300	2960	1820	3470

ISA + 20 °C			CONCRETE		GRASS	
Airport altitude H [ft]	Temperature tH [°C]	Temperature tH [°F]	Takeoff Run [ft]	Distance over 50 ft obstacle [ft]	Takeoff Run [ft]	Distance over 50 ft obstacle [ft]
0 ft ISA	35,0	95	750	1720	1050	2010
2000 ft ISA	31,0	88	850	1930	1190	2270
4000 ft ISA	27,1	81	960	2180	1340	2560
6000 ft ISA	23,1	74	1090	2470	1510	2900
8000 ft ISA	19.2	66	1230	2800	1720	3280
10000 ft ISA	15,2	59	1400	3180	1950	3730

ISA	-10 °C	CONCRETE		GRASS		
Airport altitude H [ft]	Temperature tH [°C]	Temperature tH [°F]	Takeoff Run [ft]	Distance over 50 ft obstacle [ft]	Takeoff Run [ft]	Distance over 50 ft obstacle [ft]
0 ft ISA	5.0	41	610	1400	860	1640
2000 ft ISA	1.0	34	690	1570	960	1840
4000 ft ISA	-2,9	27	780	1770	1080	2080
6000 ft ISA	-6,9	20	880	1990	1220	2340
8000 ft ISA	-10,8	12	990	2250	1380	2640
10000 ft ISA	-14,8	5	1120	2550	1560	2990

ISA	-20 °C	CONCRETE		GRASS		
Airport altitude H [ft]	Temperature tH [°C]	Temperature tH [°F]	Takeoff Run [ft]	Distance over 50 ft obstacle [ft]	Takeoff Run [ft]	Distance over 50 ft obstacle [ft]
0 ft ISA	-5,0	23	570	1300	800	1520
2000 ft ISA	-9,0	16	640	1460	890	1710
4000 ft ISA	-12,9	9	720	1640	1010	1920
6000 ft ISA	-16,9	2	810	1850	1130	2170
8000 ft ISA	-20,8	-6	920	2080	1280	2450
10000 ft ISA	-24,8	-13	1040	2360	1450	2760

5.2.4 Landing distances

ISA Conditions			CONCRETE		GRASS	
Airport altitude H [ft]	Temperature tH [°C]	Temperature tH [°F]	Landing Run [ft]	Distance over 50 ft obstacle [ft]	Landing Run [ft]	Distance over 50 ft obstacle [ft]
0 ft ISA	15,0	59	300	950	360	1020
2000 ft ISA	11,0	52	320	1010	380	1080
4000 ft ISA	7,1	45	340	1070	410	1150
6000 ft ISA	3,1	38	360	1140	430	1220
8000 ft ISA	-0,8	30	380	1210	460	1300
10000 ft ISA	-4,8	23	410	1290	490	1380

ISA + 10 °C			CONCRETE		GRASS	
Airport altitude H [ft]	Temperature tH [°C]	Temperature tH [°F]	Landing Run [ft]	Distance over 50 ft obstacle [ft]	Landing Run [ft]	Distance over 50 ft obstacle [ft]
0 ft ISA	25.0	77	310	980	370	1060
2000 ft ISA	21,0	70	330	1040	400	1120
4000 ft ISA	17,1	63	350	1110	420	1190
6000 ft ISA	13,1	56	370	1180	450	1260
8000 ft ISA	9,2	48	400	1250	470	1350
10000 ft ISA	5,2	41	420	1330	510	1430

ISA + 20 °C			CONCRETE		GRASS	
Airport altitude H [ft]	Temperature tH [°C]	Temperature tH[°F]	Landing Run [ft]	Distance over 50 ft obstacle [ft]	Landing Run [ft]	Distance over 50 ft obstacle [ft]
0 ft ISA	35,0	95	320	1020	390	1090
2000 ft ISA	31,0	88	340	1080	410	1160
4000 ft ISA	27,1	81	360	1150	430	1230
6000 ft ISA	23,1	74	380	1220	460	1310
8000 ft ISA	19.2	66	410	1300	490	1390
10000 ft ISA	15,2	59	440	1380	520	1480

ISA -10 °C			CONCRETE		GRASS	
Airport altitude H [ft]	Temperature tH [°C]	Temperature tH [°F]	Landing Run [ft]	Distance over 50 ft obstacle [ft]	Landing Run [ft]	Distance over 50 ft obstacle [ft]
0 ft ISA	5,0	41	290	920	350	980
2000 ft ISA	1,0	34	310	970	370	1040
4000 ft ISA	-2,9	27	330	1030	390	1110
6000 ft ISA	-6,9	20	350	1100	420	1180
8000 ft ISA	-10,8	12	370	1160	440	1250
10000 ft ISA	-14.8	5	390	1240	470	1330

ISA -20 °C			CONCRETE		GRASS	
Airport altitude H [ft]	Temperature tH [°C]	Temperature tH [°F]	Landing Run [ft]	Distance over 50 ft obstacle [ft]	Landing Run [ft]	Distance over 50 ft obstacle [ft]
0 ft ISA	-5.0	23	280	880	340	950
2000 ft ISA	-9,0	16	300	940	350	1010
4000 ft ISA	-12,9	9	310	990	380	1070
6000 ft ISA	-16,9	2	330	1050	400	1130
8000 ft ISA	-20,8	-6	350	1120	420	1200
10000 ft ISA	-24,8	-13	380	1190	450	1280

5.2.5 Climb performance

CONDITIONS:	BEST RA	TE OF CL	IMB			BEST ANGLE OF CLIMB				
MCP MTOW	IAS	IAS	KIAS	RATE OF CLIMB	RATE OF CLIMB	IAS	IAS	KIAS	RATE OF CLIMB	RATE OF CLIMB
ALTITUDE	[mph]	[km/h]	[knots]	[m/s]	[fpm]	[mph]	[km/h]	[knots]	[m/s]	[fpm]
0 ft ISA	78	125	67	4.6	910	70	112	60	4.4	860
2000 ft ISA	76	123	66	4,0	790	68	110	59	3,7	730
4000 ft ISA	75	121	65	3,4	660	67	108	58	3,1	610
6000 ft ISA	74	119	64	2,8	540	66	106	57	2,5	490
8000 ft ISA	73	117	63	2,1	410	65	104	56	1,9	370
10000 ft ISA	71	115	62	1,5	290	63	102	55	1,3	260

526 Cruise

Aircraft Operating Instructions

5.2.0	Cruise					
			55%	65%	75%	MCP
			4300 rpm	4800 rpm	5000 rpm	5500 rpm
		KIAS	90 knots	104 knots	109 knots	121 knots
	0 ft	KCAS	89 knots	103 knots	108 knots	120 knots
		KTAS	89 knots	103 knots	108 knots	120 knots
		KIAS	88 knots	101 knots	106 knots	119 knots
200	2000 ft	KCAS	87 knots	100 knots	105 knots	117 knots
		KTAS	90 knots	103 knots	108 knots	121 knots
		KIAS	86 knots	98 knots	102 knots	114 knots
4	4000 ft	KCAS	85 knots	97 knots	101 knots	113 knots
		KTAS	90 knots	103 knots	108 knots	120 knots
		KIAS	84 knots	95 knots	99 knots	110 knots
e	6000 ft	KCAS	83 knots	94 knots	98 knots	108 knots
		KTAS	91 knots	102 knots	107 knots	119 knots
		KIAS	82 knots	91 knots	95 knots	105 knots
8	3000 ft	KCAS	81 knots	91 knots	94 knots	104 knots
		KTAS	92 knots	102 knots	107 knots	117 knots
		KIAS	80 knots	88 knots	92 knots	100 knots
1	0000 ft	KCAS	79 knots	88 knots	91 knots	99 knots
		KTAS	92 knots	102 knots	106 knots	116 knots

5.2.7 Endurance and Range

The table below shows fuel consumption, endurance and range

European I	400 1	24 7 US and	l' '		0	
Fuel qty. =	<u>120 I</u>	31,7 US gal				
Unusable fuel =	11	0,3 US gal		NO FUEL RES	SERVE CONS	IDERED !
			55%	65%	75%	MCP
		4000 rpm			5000 rpm	5500 rpm
	KIAS		4300 rpm	4800 rpm		
		82 knots	90 knots	104 knots	109 knots	121 knots
	KCAS	81 knots	89 knots	103 knots	108 knots	120 knots
	KTAS	81 knots	89 knots	103 knots	108 knots	120 knots
0 ft	Fuel consumption	10,5 l/h	13,0 l/h	17,6 l/h	19,6 l/h	25,2 l/h
		2,8 USgal/h	3,4 USgal/h	4,7 USgal/h	5,2 USgal/h	6,6 USgal/h
	Endurance	11:18	9:09	6:45	6:03	4:43
	Range	1700 km	1510 km	1290 km	1220 km	1050 km
	K140	920 NM	820 NM	700 NM	660 NM	570 NM
	KIAS	80 knots	88 knots	101 knots	106 knots	119 knots
	KCAS	80 knots	87 knots	100 knots	105 knots	117 knots
	KTAS	82 knots	90 knots	103 knots	108 knots	121 knots
2000 ft	Fuel consumption	10,8 l/h	13,2 l/h	17,7 l/h	19,6 l/h	25,0 l/h
	•	2,9 USgal/h	3,5 USgal/h	4,7 USgal/h	5,2 USgal/h	6,6 USgal/h
	Endurance	11:00	9:00	6:44	6:03	4:46
	Range	1670 km	1500 km	1280 km	1210 km	1070 km
	-	900 NM	810 NM	690 NM	650 NM	580 NM
	KIAS	79 knots	86 knots	98 knots	102 knots	114 knots
	KCAS	78 knots	85 knots	97 knots	101 knots	113 knots
	KTAS	83 knots	90 knots	103 knots	108 knots	120 knots
4000 ft	Fuel consumption	11,1 ∥h	13.4 l/h	17,7 l/h	19.6 l/h	24,8 l/h
4000 11	•	2,9 USgal/h	3,5 USgal/h	4,7 USgal/h	5,2 USgal/h	6,5 USgal/h
	Endurance	10:43	8:52	6:42	6:03	4:48
	Range	1650 km	1480 km	1270 km	1210 km	1070 km
	-	890 NM	800 NM	690 NM	650 NM	580 NM
	KIAS	77 knots	84 knots	95 knots	99 knots	110 knots
	KCAS	77 knots	83 knots	94 knots	98 knots	108 knots
	KTAS	84 knots	91 knots	102 knots	107 knots	119 knots
6000 ft	Fuel consumption	11,4 l/h	13,6 l/h	17,8 l/h	19,6 l/h	24,6 l/h
000011	•	3,0 USgal/h	3,6 USgal/h	4,7 USgal/h	5,2 USgal/h	6,5 USgal/h
	Endurance	10:26	8:43	6:40	6:03	4:50
	Range	1630 km	1470 km	1270 km	1200 km	1060 km
		880 NM	790 NM	680 NM	650 NM	570 NM
	KIAS	76 knots	82 knots	91 knots	95 knots	105 knots
	KCAS	77 knots	83 knots	92 knots	96 knots	106 knots
	KTAS	85 knots	92 knots	102 knots	107 knots	117 knots
8000 ft	Fuel consumption	11,7 l∕h	13,9 l/h	17,9 l/h	19,6 l/h	24,4 l/h
000011	-	3,1 USgal/h	3,7 USgal/h	4,7 USgal/h	5,2 USgal/h	6,4 USgal/h
	Endurance	10:11	8:35	6:39	6:03	4:53
	Range	1610 km	1460 km	1260 km	1200 km	1060 km
		870 NM	790 NM	680 NM	650 NM	570 NM
	KIAS	75 knots	80 knots	88 knots	92 knots	100 knots
	KCAS	74 knots	79 knots	88 knots	91 knots	99 knots
	KTAS	86 knots	92 knots	102 knots	106 knots	116 knots
10000 ft	Fuel consumption	12,0 l∕h	14,1 l/h	17,9 l/h	19,6 l/h	24,2 l/h
1000011	•	3,2 USgal/h	3,7 USgal/h	4,7 USgal/h	5,2 USgal/h	6,4 USgal/h
	Endurance	9:56	8:27	6:37	6:03	4:55
	Range	1590 km	1440 km	1250 km	1190 km	1050 km
	Range	860 NM	780 NM	680 NM	640 NM	570 NM

5.2.8	Demonstrated crosswind performance	
	Max. permitted head wind velocity for take-off and landing15 m/s	30 knots
	Max. permitted cross wind velocity for take-off and landing8 m/s	16 knots
5.2.9	Optimum glide speed	
	Optimum glide speed 110-120 km/h	60-65 KIAS
5.2.10	Ceiling	
	Service ceiling4000 m	13.100 ft

SECTION 6

6 WEIGHT AND BALANCE

6.1 Introduction

6.2 Weight and Balance Record

6.2.1 Weight and Balance Report

- 6.2.1.1 Empty Aircraft Weight and CG
- 6.2.1.2 Loaded Aircraft Weight and CG
- 6.2.1.3 Weight and CG Blank Form
- 6.3 Permitted payload range

6.4 Operational Weight and Balance Computation

- 6.4.1 Airplane Loading Schedule Chart
- 6.4.2 Table of static moments
- 6.4.3 Airplane loading graph
- 6.4.4 CG Moment envelope
- 6.4.5 CG limits
- 6.5 Equipment list

6.1 Introduction

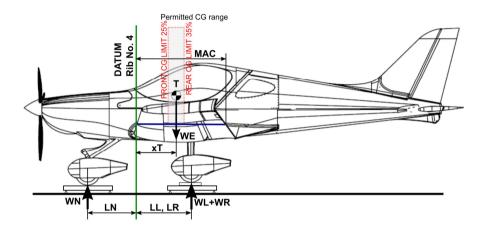
This section contains the payload range within which the BRISTELL LSA may be safely operated.

Procedures for weighing the aircraft and the calculation method for establishing the permitted payload range are contained in last revision of FAA Aviation Advisory Circular AC.43.13 – 1B

6.2 Weight and Balance Record

The table is intended to record continuous history of chan cres of equipment

Туре	BR	RISTELL LSA		Serial. N	0.:	357/2018					
Date	Iter No.		Description of part or modification	Weight Added (+)			change Re	emoved ((-)	Basic weight of empty airplane	
	+	-	W	Weight (lb)	Arm (in)	Moment (lb.in)	Weight (lb)	Arm (in)	Moment (lb.in)	-	Moment (Ib.in) 12314
1.8. 2018			Manufactured airplane							802	12314 (


Date of Issue: 03/2018 Document No.: SLSA-AOI-5-7-0-US ი-ა

Revision: -

- 6.2.1 Weight and Balance Report
- 6.2.1.1 Empty Aircraft Weight and CG

						MAC (in):	53,8	
	ITEM	WEIG	HT	ARM	1	MOMENT = WEIGHT x ARM		
_		(lb))	(in)		(lb.in)		
	RIGHT MAIN WHEEL	WR=	313	LR=	27,6	MR=	8626,0	
AIRCRAFT T AND CG	LEFT MAIN WHEEL	WL=	318	LL=	27,6	ML=	8763,8	
TY AIF GHT A	NOSE WHEEL	WN=	171	LN=	-29,7	MN=	-5076,1	
EMPTY WEIGH	EMPTY AIRCRAFT	EMPTY W (lbs		CG (in) = 15 <i>,</i> 35	EMPTY ACFT TO (lbs.i	-	
		WE=	802	CG (%MAG	C) = 28,5	MT=	12313,62	

Serial No.: 357/2018
Date: 1.8.2018
By: BRM Aero

CG (in)= Total Momen Total Weight

CG (%MAC) = CG (in) $x \frac{100}{MAC}$

6.2.1.2 Loaded Aircraft Weight and CG

	ITEM	WEIGHT (lb)	ARM (in)	MOMENT = WEIGHT x ARM (lb.in)
	EMPTY AIRCRAFT	802,0	15,35	12313,6
	PILOT		23,6	
	PASSENGER		23,6	
e H	BAGGAGE - BEHIND SEATS		55,1	
LOADED AIRCRAFT WEIGHT AND CG	BAGGAGE - FRONT optional)		-9,8	
ADED.	BAGGAGE - WING LOCKERS		24,8	
g ≥	FUEL TANKS		7,9	
	LOADED AIRCRAFT	TAKEOFF WEIGHT (lbs) TOW=	CENTER OF GRAVITY CG (in)= CG (%MAC) =	LOADED ACFT TOTAL MOMENT (lb.in) MT=
<u> </u>	Max.Takeoff Weight: CG Range:	1320,0 lb 25 35	CG (in)= Total Momen Total Weight	Serial No.: 357/2018 Date:
	Forward limit: Rearward limit:	13,5 in 18,8 in	CG (%MAC)=CG (in) $x \frac{100}{MAC}$	By:

6.2.1.3 Weight and CG Blank Form

-	ITEM	WEIGHT (Ib)	ARM (in)		MOMENT = WEIGHT x ARM (lb.in)		
	RIGHT MAIN WHEEL	WR=	LR=	27,6	MR=		
aircraft F and Cg	LEFT MAIN WHEEL	WL=	LL=	27,6	ML=		
	NOSE WHEEL	WN=	LN=	-29,7	MN=		
EMP TY WEIGH	EMPTY AIRCRAFT	EMPTY WEIGHT (lbs)	CG (in) =		EMPTY ACFT TOTAL MOMENT (lbs.in)		
		WE=	CG (%MAC) =		MT=		

	ITEM	WEIGHT	ARM	MOMENT = WEIGHT x ARM
	EMPTY AIRCRAFT	(lb)	(in)	(lb.in)
	PILOT		23,6	
	PASSENGER		23,6	
AFT CG	BAGGAGE - BEHIND SEATS		55,1	
AIRCR T AND	BAGGAGE - FRONT optional)		-9,8	
LOADED AIRCRAFT WEIGHT AND CG	BAGGAGE - WING LOCKERS		24,8	
	FUEL TANKS		7,9	
	LOADED AIRCRAFT	TAKEOFF WEIGHT (lbs) TOW=	CENTER OF GRAVITY CG (in)= CG (%MAC) =	LOADED ACFT TOTAL MOMENT (lb.in) MT=

Max.Takeoff Weight:	1320	lb	CG (in)= Total Moment Total Weight	Serial No.: 357/2018
CG Range:	25	35		Date:
Forward limit:	13,5	in	CG (%MAC) = CG (in) $x \frac{100}{MAC}$	By:
Rearward limit:	18,8	in		

.

WE

Max.useful load:

WU (lb) = MTOW

WU (lb) = 1320

WU (lb) =

WARNING DO NOT EXCEED MAXIMUM TAKEOFF WEIGHT!

6.3 Permitted payload range

	PERMIT	TED PA	YLOAD	RANGE	OF BRIST	FELL (Ib))	
S/N:	357/2018			Empty weight (lb): 802 MTOW (lb): 13				
F								
U	VOLUME	(US gal)	5,0	10,0	15,0	20,0	25,0	31,7
L	WEIGHT	(lb)	30,3	60,5	90,8	121,0	151,3	191,8
			PERIV	IITTED CR	EW WEI	GHT (lb)		
	NO BAGGAGE	0	488 33.9 % MAC	457 33,2 %MAC	427 32.5 % MAC	397 31.9 %MAC	367 31.2 % MAC	326 30.3 % MAC
	1/2 REAR	17	471 34,6 % MAC	441 33,9 %MAC	411 33,3 % MAC	380 32,6 %MAC	350 31,9 % MAC	310 31,0 % MAC
B	MAX REAR	33	402 35,0 % MAC	424 34,7 %MAC	394 34,0 % MAC	364 33,3 %MAC	334 32,7 % MAC	293 31,8 % MAC
G	1/2 WING LOCKERS	44	444 34,0 % MAC	413 33,3 %MAC	383 32,6 % MAC	353 31,9 %MAC	323 31,3 %MAC	282 30,4 %MAC
A G	1/2 REAR + 1/2 WING	61	427 34,7 % MAC	397 34,0 %MAC	367 33,4 %MAC	336 32,7 %MAC	306 32,0 % MAC	266 31,1 %MAC
E	MAX REAR + 1/2 WING	77	347 35,0 % MAC	380 34,8 %MAC	350 34,1 % MAC	320 33,4 %MAC	290 32,7 % MAC	249 31,8 %MAC
	MAX WING LOCKERS	88	400 34,0 % MAC	369 33,4 %MAC	339 32,7 % MAC	309 32,0 %MAC	279 31,4 %MAC	238 30,5 %MAC
	1/2 REAR + MAX WING	105	383 34,8 %MAC	353 34,1 %MAC	323 33,4 %MAC	292 32,8 %MAC	262 32,1 % MAC	221 31,2 %MAC
(Ib)	MAX REAR + WING	121	292 35,0 % MAC	336 34,8 %MAC	306 34,2 % MAC	276 33,5 %MAC	245 32,8 %MAC	205 31,9 % <i>M</i> AC

Permitted crew weight with regard to CG limits.

"X" (if present) means computed crew weight less than minimum crew weight

6.4 Operational Weight and Balance Computation

An important part of preflight planning is to determine that the aircraft is loaded so its weight and CG location are within the allowable limits. This is possible by using hereafter explained Loading graph method, using weights, arms, and moment indexes.

Procedure:

- 1. Record into the 6.4.1 Airplane Loading Schedule Chart current empty weight and static moment of the airplane, which you read from 6.2 Weight and Balance Record.
- 2. Record the weight of crew, fuel, and baggage into 6.4.1 Airplane Loading Schedule Chart.
- 3. See the 6.4.2 Table of static moments or 6.4.3 Airplane loading graph to read static moments for given weights of crew, fuel, and baggage.
- 4. Record found moments into the 6.4.1 Airplane Loading Schedule Chart.
- 5. Determine Take-off weight of the airplane add together the airplane empty weight, crew, fuel, and baggage and record the result into the 6.4.1 Airplane Loading Schedule Chart.
- Check, whether the calculated Take-off weight does not exceed Airplane Maximum Take-off Weight 1320 lb, 600 kg.
 If yes, then it is necessary to reduce weight of some of the useful load items (fuel, baggage).

WARNING

EXCEEDING MTOW MAY LEAD TO DETERIORATION OF SAFETY OF FLIGHT!

- 7. Determine Total Static Moment of loaded airplane add together the static moment of empty airplane, crew, fuel, and baggage and record the result into the 6.4.1 Airplane Loading Schedule Chart.
- 8. Plot Takeoff Weight and Total Static Moment into the 6.4.4 CG Moment envelope.
- Check, whether the intersection of Take-off weight horizontal line and Total Static Moment vertical line is inside the envelope. If YES, then the flight may be safely performed as regards weight

and balance.

If **NOT**, then it is necessary to change weight of some of the useful load items (crew, fuel, baggage) so that after a repeated computation the intersection of Take-off Weight and Total Static Moment will be inside the CG Moment envelope.

WARNING

SAFETY OF FLIGHT PERFORMED WITH THE AIRPLANE LOADED OUTSIDE PERMITTED LIMITS OF WEIGHT AND STATIC MOMENTS MAY BE DETERIORATED!

6.4.1 Airplane Loading Schedule Chart

	Aircraft Type/Model:	BRISTELLLSA	Airplane S/N:	357/2018	Registration:	N557BL			
	LOADING SCHEDULE C	HART	SAMPLE AIRCRAFT			YOUR AIRCRAFT		357/2018	
#	ITEM	WEIGHT LIMIT [Ib]	WEIGHT [Ib]	ARM [in]	MOMENT/100 [lb.in]	WEIGHT [lb]	ARM [in]	MOMENT/100 [lb.in]	
1.	Einpty æroplane		771,6	15,1	116,3	802,0	15,35	123,136	
2.	Crew		198,4	23,6	46,9		23,6		
3.	Fuel	190,5	111,1	7,9	8,7		7,9		
4.	Bagagge behind seats	33,1	33,1	55,1	18,2		55,1		
5.	Baggage wing lockers	88,2	88,2	24,8	21,9		24,8		
6.	Baggage front locker	22,0	22,0	-9,8	-2,2		-9,8		
		мтоw [Ib] 1320	TAKEOFF WEIGHT [Ib] = sum of weights 1 to 6 1224,4		TOTAL MOMENT/100 [lb.in] = sum of moments 1 to 6 209,8	TAKEOFF WEIGHT [Ib] = sum of weights 1 to 6		TOTAL MOMENT/100 [lb.in] = sum of moments 1 to 6	
		FRONT CG LIMIT 13,5 AFT CG LIMIT 18,8	CG POSITION TOTAL MOMENT/100 x 100 [in] = TAKEOFF WEIGHT = 20982,4 1224,4 = 17,136			CG POSITION TOTAL MOMENT/100 x 100 [in] = TAKEOFF WEIGHT =			
		FRONT CG LIMIT 25,0 %MAC AFT CG LIMIT 35,0 %MAC	CG POSITION [%MAC] = = =	1713,6 53,8	-	CG POSITION [%MAC] = = =		= -	

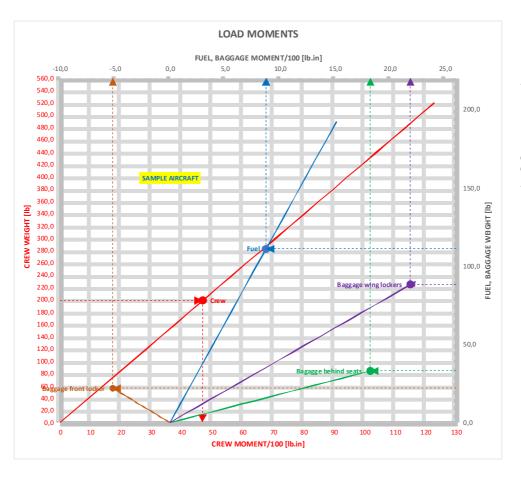
6.4.2 Table of static moments

22

-2,2

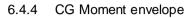
CR	EW	FUEL			BAGGAGE BEHIND SEATS		BAGGAGE WING LOCKERS		BAGGAGE FRONT LOCKER	
Weight [lb]	Moment/100 [lb.in]	Quantity [US gal]	Weight [lb]	Moment/100 [lb.in]	Weight [lb]	Moment/100 [Ib.in]	Weight [lb]	Moment/100 [Ib.in]	Weight [lb]	Moment/100 [lb.in]
0,0	0,0	0,0	0,0	0,0	0	0,0	0	0,0	0	0,0
121,0	28,6	2,0	12,0	0,9	2	1,1	5	1,2	1	-0,1
140,0	33,1	4,0	24,0	1,9	4	2,2	10	2,5	2	-0,2
160,0	37,8	6,0	36,1	2,8	6	3,3	15	3,7	3	-0,3
180,0	42,5	8,0	48,1	3,8	8	4,4	20	5,0	4	-0,4
200,0	47,2	10,0	60,1	4,7	10	5,5	25	6,2	5	-0,5
220,0	52,0	12,0	72,1	5,7	12	6,6	30	7,4	6	-0,6
240,0	56,7	14,0	84,1	6,6	14	7,7	35	8,7	7	-0,7
260,0	61,4	16,0	96,1	7,6	16	8,8	40	9,9	8	-0,8
280,0	66,1	18,0	108,2	8,5	18	9,9	45	11,2	9	-0,9
300,0	70,9	20,0	120,2	9,5	20	11,0	50	12,4	10	-1,0
320,0	75,6	22,0	132,2	10,4	22	12,1	55	13,6	11	-1,1
340,0	80,3	24,0	144,2	11,4	24	13,2	60	14,9	12	-1,2
360,0	85,0	26,0	156,2	12,3	26	14,3	65	16,1	13	-1,3
380,0	89,8	28,0	168,2	13,2	28	15,4	70	17,4	14	-1,4
400,0	94,5	30,0	180,3	14,2	30	16,5	75	18,6	15	-1,5
420,0	99,2	32,0	192,3	15,1	32	17,6	80	19,8	16	-1,6
440,0	103,9				33	18,2	85	21,1	17	-1,7
460,0	108,7			•			90	22,3	18	-1,8
480,0	113,4						-	•	19	-1,9
500,0	118,1								20	-2,0
520,0	122,8								21	-2,1

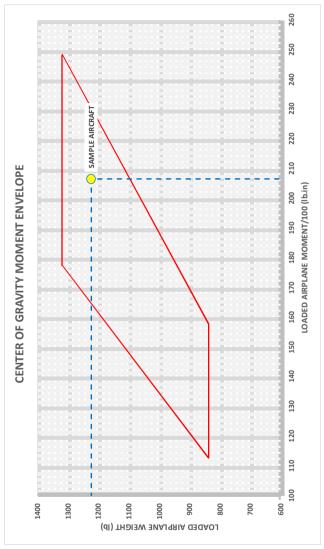
Date of Issue: 03/2018 Document No.: SLSA-AOI-5-7-0-US 6-11


Revision: -

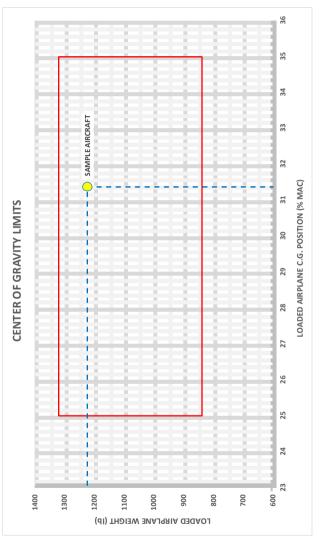
BRISTELL LSA

Aircraft Operating Instructions


6.4.3 Airplane loading graph



Revision: -



6.4.5 CG limits

6.5 Equipment list

List of equipment installed in Bristell LSA, S/N 357/2018:

- 1. 12V/5V socket on instrument panel
- 2. 2 map pockets
- 3. 3-pos.adjustable rudder pedals on both sides
- 4. additional 12V/5V socket on instrument panel
- 5. Aileron + elevator electric trim control on both control sticks
- 6. AMSAFE 4-point safety belts
- 7. Arm rest box
- 8. Automotive net in baggage compartment (P/N 42084)
- 9. AVEO Powerburst Daylight wing strobes/nav lights
- 10. Beringer 5,00-5 wheels
- 11. Beringer dual brakes with pressure limiter, parking brake
- 12. Cabin heat
- 13. Canopy glass blue
- 14. Central console armrest cover padded leather
- 15. DUC Inconel Flash propeller
- 16. ELT Kannad AF Integra 406 MHz
- 17. Fixed landing gear, steerable nose wheel
- 18. Fuel selector on console between seats
- 19. Garmin G3X flight display system
- 20. Garmin G5 EFIS
- 21. Garmin GA 26C GPS antenna for G3X
- 22. Garmin GA 57X combo GPS / XM antenna for G3X
- 23. Garmin GAP 26 angle of attack heated probe
- 24. Garmin GDU 460, 10,6" dual
- 25. Garmin GEA 24 Engine Interface Module
- 26. Garmin GMC 507 Autopilot Control Module without Yaw damper
- 27. Garmin GMU 22 Magnetometer
- 28. Garmin GSA 28 autopilot servos installation (roll+pitch)
- 29. Garmin GSU 25 ADHRS (2x)
- 30. Garmin GTP 59 Temperature Probe
- 31. Garmin GTR 20 remote-mount comm radio

- 32. Garmin GTX 45R mode S transponder with ADS-B out
- 33. Grey interior RAL 7016
- 34. Horn (klaxon) 4-cars
- 35. Lambert Flaps V4_0 LED light +LINAK electric flaps actuator
- 36. Landing lights in both wings, WIG-WAG
- 37. Large size oil cooler
- 38. Large square eye-ball vents 3275
- 39. Leather glareshield, middle size
- 40. Leather grips of the control sticks
- 41. LED strip on glareshield + dimmer
- 42. LEMO Connector with power supply
- 43. Lockable canopy, Lockable fuel tank caps
- 44. Long HTU (2.9 m) with long trim and horn balance
- 45. Middle size instrument panel for G3X
- 46. Noise insulation on firewall
- 47. Nose gear doubled flexible rod (Teleflex)
- 48. Paint scheme: #14
- 49. RAMI AV-10 comm antenna
- 50. RAMI AV-74 transponder DME antenna
- 51. Rotax 912 iS Sport engine
- 52. Seats padded leather
- 53. Side panels padded leather
- 54. TCW IBBS-12V-3AH backup battery for Garmin G3X
- 55. Tosten CS-8 grips
- 56. USB port(s) on the instrument panel
- 57. VARTA Powersports battery
- 58. VOR VAL 2000 Ultra-thin navigation receiver
- 59. Wheel fairings (pants) for wheels 5,00"-5"
- 60. Whelen MB 1 tail mounted LED strobe
- 61. Wing lockers
- 62. Winter QM 2 Art. 1120 bank indicator

SECTION 7

7 AIRPLANE AND SYSTEMS DESCRIPTION

- 7.1 Introduction
- 7.2 Airframe
- 7.3 Control system
- 7.4 Landing gear
- 7.5 Seats and safety harness
- 7.6 Baggage compartment
- 7.7 Canopy
- 7.8 Power plant
- 7.8.1 Throttle
- 7.8.2 Heating
- 7.9 Fuel system
- 7.10 Electrical system
- 7.10.1 Battery
- 7.10.2 Master switch
- 7.10.3 Lane Switches
- 7.10.4 Start Power Switch
- 7.10.5 Battery Backup Switch
- 7.10.6 Start Button
- 7.11 Pitot and static pressure system
- 7.12 Miscellaneous equipment
- 7.13 Instruments and Avionics
- 7.14 Cockpit
- 7.14.1 Cockpit layout
- 7.14.2 Instrument panel

7.1 Introduction

This section provides description and operation of the aircraft and its systems.

7.2 Airframe

All-metal construction, single curvature metal skins riveted to stiffeners. Construction is of 6061-T6 aluminum sheet metal riveted to aluminum angles with Avex rivets. This high strength aluminum alloy construction provides long life and low maintenance costs thanks to its durability and corrosion resistance characteristics.

The wing has a high lift airfoil equipped by fowler flaps controlled by the electric servo operated by the pilot.

7.3 Control system

The plane is equipped with a dual stick control and classic rudder pedals, with pedal hydraulic brakes for easy ground control.

The elevator and aileron trim control, as well as wing flaps are electrically operated from the rocker switches located on the instrument panel or on the control stick.

7.4 Landing gear

Tricycle landing gear with the steerable nose wheel. Main landing gear uses two fiberglass spring elements.

7.5 Seats and safety harness

Side-by-side seating. Seat cushions are removable to make easier cleaning and drying. Four point safety belts provided to each seat. Optional, is additional seat upholstery to raise the small pilot or move him forward.

NOTE

Prior to each flight, ensure that the seat belts are firmly secured to the airframe, and that the belts are not damaged. Adjust the buckle so that it is centered on the body.

7.6 Baggage compartment

The rear baggage compartment is located behind the seats. It may accommodate up to 15 kg (33 lb). This space is divide on two sections – baggage compartment A and B. Is not recommended give too heavy things into baggage compartment B.

The baggage may also be loaded into the baggage compartment inside each wing up to 20 kg (44 lb), in each wing locker.

Make sure that baggage does not exceed maximum allowable weight, and that the aircraft CG is within limits with loaded baggage.

All baggage must be properly secured.

7.7 Canopy

Access to the cabin is from both sides. Make sure that the canopy is latched and mechanism is securely locked into position on both sides before operating the aircraft.

7.8 Power plant

Engine:

Rotax 912 iS SPORT is 4-stroke, 4 cylinder, horizontally opposed, spark ignition engine with one central camshaft-push-rod-OHV. Liquid cooled cylinder heads, ram air cooled cylinders.

Dry sump forced lubrication. Dual contactless capacitor discharge ignition. The engine is fitted with an electric starter, AC generator and electrical fuel pumps. Prop drive via reduction gear with integrated shock absorber.

Propeller:

DUC Inconel FLASH, composite, 3-bladed, on-ground adjustable propeller.

ΝΟΤΕ	
For technical data refer to documentation supplied by the propeller	
manufacturer.	

7.8.1 Throttle

Engine power is controlled by means of the THROTTLE lever. THROTTLE lever is positioned in the middle channel between the seats. Lever is mechanically connected (by cables) to the flaps on the carburetors. Spring is added to the throttle push rod to ensure that the engine will go to full power if the linkages fail.

7.8.2 Heating

Heating consists of a heat exchanger on the exhaust manifold and control mechanism located on the right hand side of instrument panel.

CAUTION

Incidents involving exhaust gases entering the heating or ventilation system may result in fatal accidents due to carbon monoxide poisoning of the aircraft occupants. A carbon monoxide detector is recommended.

7.9 Fuel system

Wing tanks volume: 2x60 I (2x16 US gallons)

Each tank is equipped with a vent outlet and screen filter.

Drain valve located in the lowest point of the each tank and on the bottom edge of the firewall, on the gascolator.

Main fuel selector valve is on the central console in the cockpit.

The electric fuel pump is located on firewall.

CAUTION

Do not overfill the tanks to avoid fuel overflow through venting tubes.

7.10 Electrical system

7.10.1 Battery

The battery is mounted on the forward side of the firewall.

7.10.2 Master switch

Master switch connects the electrical system to the 12 Volt battery and charger/coils, controlled by the regulator. See Engine Manual for electrical system details.

NOTE Ignition system is independent on the power source and will operate even with Master switch and/or breaker off.

7.10.3 Lane Switches

There are instaled two independent LANE select switches A and B on the instrument panel to connect the engine control unit ECU for the relevant LANE to the EMS power supply. The switches are used for LANE and ignition check after engine starting. LANE A and LANE B have different sensor inputs. During LANE and Ignition Check, some sensors values are not displayed, depending on activation of the LANES. Refer to Engine Operator's Manual for more details.

NOTE

All switches and or engine controls are "up" or "push forward" for operation, except cabin heat which is "Pull" for "on". Optional equipment, switches and/or fuses are subject to change or installed as requested. See Aircraft Equipment List and Photo and Description of equipment and controls in the cockpit.

Revision: -

7.10.4 Start Power Switch

By pressing the Start Power Switch, the EMS system of the engine is powered externally by the onboard battery for a short time during start-up.

7.10.5 Battery Backup Switch

If necessary (e.g. in case of supply failure by the internal generator) the EMS system can by powered by the onboard battery by activating the Battery Backup Switch.

7.10.6 Start Button

The Red Start Button on the instrument panel activates the starter motor.

7.11 Pitot and static pressure system

Pitot tube (optionally heated) is located below the wing. Pressure distribution to the instruments is through flexible plastic hoses.

Static ports are located on both sides of the fuselage at the tail.

Keep the Pitot tube and static ports clean to ensure proper function of the system..

7.12 Miscellaneous equipment

BRISTELL LSA, S/N 357/2018 is fitted with

- 1. 12V/5V socket on instrument panel
- 2. 2 map pockets
- 3. 3-pos.adjustable rudder pedals on both sides
- 4. additional 12V/5V socket on instrument panel
- 5. Aileron + elevator electric trim control on both control sticks
- 6. AMSAFE 4-point safety belts
- 7. Arm rest box
- 8. Automotive net in baggage compartment (P/N 42084)
- 9. AVEO Powerburst Daylight wing strobes/nav lights
- 10. Beringer 5,00-5 wheels + wheel pants
- 11. Beringer dual brakes with pressure limiter, parking brake
- 12. Cabin heat
- 13. Canopy glass blue
- 14. Fuel selector on console between seats
- 15. Horn (klaxon) 4-cars
- 16. Lambert Flaps V4_0 LED light +LINAK electric flaps actuator
- 17. Landing lights in both wings, WIG-WAG
- 18. Large size oil cooler
- 19. Large square eye-ball vents 3275
- 20. Leather interior
- 21. LED strip on glareshield + dimmer
- 22. LEMO Connector with power supply
- 23. Lockable canopy, Lockable fuel tank caps
- 24. Middle size instrument panel for G3X
- 25. Noise insulation on firewall
- 26. Nose gear doubled flexible rod (Teleflex)
- 27. Tosten CS-8 grips
- 28. USB port(s) on the instrument panel
- 29. VARTA Powersports battery
- 30. Whelen MB 1 tail mounted LED strobe
- 31. Wing lockers

7.13 Instruments and Avionics

BRISTELL LSA, S/N 357/2018 is fitted with:

- 1. Garmin G5 EFIS
- 2. Winter QM 2 Art. 1120 bank indicator
- 3. Garmin G3X flight display system including:
- 4. Garmin GDU 460, 10,6" dual screens
- 5. Garmin GEA 24 Engine Interface Module
- 6. Garmin GMC 507 Autopilot Control Module
- 7. Garmin GSA-28 servos (aileron, elevator)
- 8. Garmin GSU 25 ADHRS (2x)
- 9. Garmin GMU 22 Magnetometer
- 10. Garmin GTP 59 Temperature Probe
- 11. Garmin GA 26C GPS antenna for G3X
- 12. Garmin GA 57X combo GPS / XM antenna for G3X
- 13. Garmin GAP 26 angle of attack heated probe
- 14. TCW IBBS-12V-3AH backup battery for Garmin G3X
- 15. Garmin GTR 20 remote-mount comm radio + RAMI AV-10 comm antenna
- 16. Garmin GTX 45R mode S transponder with ADS-B out + RAMI AV-74 transponder DME antenna
- 17. ELT Kannad AF Integra 406 MHz + RC 200 control unit
- 18. VOR VAL 2000 Ultra-thin navigation receiver

NOTE

instruments.	

7.14 Cockpit

7.14.1 Cockpit layout

BRISTELL LSA, S/N 357/2018 has the following cockpit layout:

7.14.2 Instrument panel

BRISTELL LSA, S/N 357/2018 has the following instrument panel:

SECTION 8

- 8 Airplane handling, servicing and maintenance
- 8.1 Introduction
- 8.2 Aircraft inspection periods
- 8.3 Aircraft alterations or repairs
- 8.4 Ground handling
- 8.4.1 Towing
- 8.4.2 Parking
- 8.4.3 Mooring
- 8.4.4 Jacking
- 8.4.5 Road transport
- 8.5 Cleaning and care

8.1 Introduction

This section contains factory-recommended procedures for proper ground handling and servicing of the airplane. It also identifies certain inspection and maintenance requirements, which must be followed if the airplane is to retain that new-plane performance and dependability.

8.2 Aircraft inspection periods

Periods of overall checks and contingent maintenance depends on the condition of the operation and on overall condition of the airplane.

Inspections and revisions should be carried out in the following periods, at least:

- a) after the first 25 flight hours
- b) after every 50 flight hours
- c) after every 100 flight hours or at least annual inspection

Refer to the Engine Operator's Manual for engine maintenance. Maintain the prop according to its manual.

All repairs and maintenance should be made in accordance with AC 43.13-1B.

8.3 Aircraft alterations or repairs

It is recommended to contact the airplane manufacturer prior to any alternations to the aircraft to ensure that the airworthiness of the aircraft is not violated. Always use only the original spare parts produced by the airplane (engine, prop) manufacturer.

If the aircraft weight is affected by that alternation, a new weighing is necessary, then record the new empty weight into the Weight and Balance record / Permitted payload range in SECTION 6 and up-date the placard showing weights in the cockpit.

8.4 Ground handling

8.4.1 Towing

To handle the airplane on the ground, use the Tow Bar, or the fuselage rear pushed down in the place of a bulkhead.

CAUTION

Avoid excessive pressure at the airplane airframe-especially at control surfaces. Keep all safety precautions, especially in the propeller area.

Revision: -

8.4.2 Parking

It is advisable to park the airplane inside a hangar or alternatively inside any other suitable space (garage) with stable temperature, good ventilation, low humidity and dust-free environment.

It is necessary to moor the airplane when it is parked outside a hangar. Also when parking for a long time, cover the cockpit canopy, possibly the whole airplane by means of a suitable tarpaulin.

8.4.3 Mooring

The airplane should be moored when parked outside a hangar after the flight day. The mooring is necessary to protect the airplane against possible damage caused by wind and gusts.

For this reason the aircraft is equipped with mooring eyes located on the lower surfaces of the wings.

Mooring procedure:

- 1. Check: Fuel Selector shut off, Circuit breakers and Master switch switched off, Switch box switched off.
- 2. Fix the hand control using e.g. safety harness
- 3. Close air vent
- 4. Close and lock canopy
- 5. Moor the aircraft to the ground by means of a mooring rope passed through the mooring eyes located on the lower surfaces of the wings and below rear fuselage

NOTE

In the case of long term parking, especially during winter, it is recommended to cover the cockpit canopy or possibly the whole aircraft by means of a suitable tarpaulin attached to the airframe.

8.4.4 Jacking

Since the empty weight of this aircraft is relatively low, two people can lift the aircraft easily.

First of all prepare two suitable supports to support the aircraft.

It is possible to lift the aircraft by handling the following parts:

 By pushing the fuselage rear section down in the place of a bulkhead the fuselage front section may be raised and then supported under the firewall.

Revision: -

- By holding the fuselage rear section under a bulkhead the fuselage rear may be raised and then supported under that bulkhead.
- To lift up a wing, push from underneath that wing <u>only</u> at the main spar area. Do not lift up a wing by handling the wing tip.

8.4.5 Road transport

The aircraft may be transported after loading on a suitable car trailer. It is necessary to dismantle the wings before road transport. The aircraft and dismantled wings should be attached securely to protect these parts against possible damage.

8.5 Cleaning and care

Use efficient cleaning detergents to clean the aircraft surface. Oil spots on the aircraft surface (except the canopy!) may be cleaned with gasoline. The canopy may only be cleaned by washing it with a sufficient quantity of lukewarm water and an adequate quantity of detergents. Use either a soft, clean cloth sponge or deerskin. Then use suitable polishers to clean the canopy.

CAUTION

Never clean the canopy under "dry" conditions and <u>never</u> use gas or chemical solvents!

Upholstery and covers may be removed from the cockpit, brushed and eventually washed in lukewarm water with an adequate quantity of detergents. Dry the upholstery thoroughly before insertion into the cockpit.

CAUTION

In the case of long term parking, cover the canopy to protect the cockpit interior from direct sunshine.

SECTION 9

9 REQUIRED PLACARDS AND MARKINGS

- 9.1 Limitation placards
- 9.2 Miscellaneous placards and markings

9.1 Limitation placards

The airplane must be placarded with:

- All fuses
- Ignition switches (LANE A,B)
- Starter
- Trim: Nose heavy and Tail heavy
- Flaps: 0°, 10°, 20°, 30°
- Maximum rear baggage weight 15 kg, 33 lb
- Maximum weight in each wing locker 20 kg, 44 lb, if installed
- Maximum weight in front locker 10 kg, 22 lb, if installed
- Instruments
- Canopy: Open Close
- Fuel capacity: 60 litres, 15.87 US gallons / min. 95 Octane at filler neck
- Fireproof Identification plate attached to the fuselage port side, in front of the horizontal tail unit

PASSENGER WARNING! THIS AIRCRAFT WAS MANUFACTURED IN ACCORDANCE WITH LIGHT SPORT AIRCRAFT AIRWORTHINESS STANDARDS AND DOES NOT CONFORM TO STANDARD CATEGORY AIRWORTHINESS REQUIREMENTS.	Passenger warning for LSA category aeroplanes. Located on the instrument panel.		
PASSENGER NOTICE THIS AIRCRAFT CONFORMS TO ASTM CONSENSUS STANDARDS OF AIRWORTHINESS DEVELOPED AND MAINTAINED BY THE AMATION COMMUNITY UNDER ASTM TECHNICAL COMMITTEE F37.	Passenger notice for LSA category aeroplanes. Located on the instrument panel.		
ALL AEROBATIC MANEUVERS, INCLUDING SPINS ARE PROHIBITED	Operation limitation. Located on the instrument panel.		
WARNING IFR FLIGHTS AND INTENTIONAL FLIGHTS UNDER ICING CONDITIONS ARE PROHIBITED!	Operation limitation. Located on the instrument panel.		
BAGGAGE COMPARTMENT - A	Main baggage compartment behind the seats.		
BAGGAGE COMPARTMENT - B	Additional baggage compartment behind the Baggage compartment A. NOT TO BE USED FOR HEAVY ITEMS!		
MAX. 33 LB	Maximum weight of baggage in the Baggage compartment – A, behind the seats.		
MAX. 44 LB	Maximum weight of baggage in each wing locker, if installed.		
MAX. 22 LB	Maximum weight of baggage in fuselage front locker, if installed.		
UNUSABLE FUEL QUANTITY 0.13 US GAL	Unusable quantity of fuel in each tank		
V _{FE} 75 kt V _A 96 kt V _{NE} 157 kt	Airspeed limitations. Located on the instrument panel or fuselage side.		
ENGINE RPM: Max. take-off (max. 5 min.) 5800 rpm Max. continuous 5500 rpm Idle 1400 rpm	Engine speed limitations. Located on the instrument panel or fuselage side.		

WARNING DO NOT EXCEED MAXIMUM TAKE-OFF WEIGHT 1320 LBS	Maximum Takeoff Weight Limitation. 1320 lb limit for Light sport aeroplanes. Located on the instrument panel or fuselage side.
--	--

9.2 Miscellaneous placards and markings

NO STEP!	Wing flap root area
NO PUSH	Areas to avoid pushing on them. Wing trailing edge, control surfaces trailing edges, etc.
CFIDACITY 161122	Located on wing upper skin around the fuel tank filler neck.
MAX MAX MAX MAX	Throttle and Choke placard located on the Throttle-choke quadrant.
PEDAL SETTING / PEDAL SETTING	Located on the fuselage right/left side under the instrument panel. Placard point to the lever to adjust pedals position.
COPILOT HEADSET PILOT HEADSET	Located between the seat backs, at the headphone sockets.
PUSH TO OPEN	Located on the fuselage left side at the button to release canopy locks.
PUSH HERE TO CLOSE	Located inside the cockpit on the left and right side of the tip- up canopy frame.

CANOPY OPENING: PULL LEVER BETWEEN SEATS AND SIMULTANEOUSLY PUSH CANOPY UP	Located on the top of the canopy inside.
CANOPY OPEN LEVER HOLD LEVER PULLED AND PUSH CANOPY UP	Located on the lever between seats.
This alrcraft is equipped with a ballistically-deployed emergency parachute system	If BRS rescue system is installed: Placard located on the both sides of fuselage between canopy and rear window
DANGER DANGER Rocket Deployed Parachute Egress Area STACY CLEBAR Emergency Information at: www.BMSpanachutes.com or call (d5)1 45-7491 – after hours & weekends call (768) 256-6110	Placard located in place rocket egress
Statte Port	Located on both sides of the fuselage tail where are located static ports.

CAUTION

The owner (operator) of this airplane is responsible for the readability of placards during the aircraft service life.

SECTION 10

- **10 SUPPLEMENTS**
- 10.1 Introduction
- 10.2 List of inserted supplements
- 10.3 Inserted Supplements

10.1 Introduction

This section contains the appropriate supplements necessary to safely and efficiently operate the aircraft when equipped with various optional systems and equipment not provided with the standard airplane.

10.2 List of inserted supplements

Date	Suppl. No.	Title of inserted supplement	
07/2011	01/2011	Aircraft Flight Training Supplement	
08/2018	02	Description of the aircraft S/N 357/2018	

10.3 Inserted Supplements

SUPPLEMENT No. 01/2011

Aircraft Flight Training Supplement

The BRISTELL LSA flying characteristics and behavior are similar to single engine aircraft.

Following training procedure is applicable if the pilot is holder of UL, PPL or LSA Pilot License. The training flight hours are recommended minimum and depends on the Flight Instructor if student pilot is ready to continue on in next training step. Training can be performed by Flight Instructor or by the experienced pilot who has minimum 20 hours on the BRISTELL LSA.

Type Rating Training Procedure:

Ground Training - before practical Flight Training the pilot has to get familiar with following procedures and documentation

- Aircraft Operating Instructions (AOI)
- Aircraft Maintenance and Inspection Procedures
- Aircraft preflight inspection procedure
- Control Checklists
- Radio, avionics, aircraft and engine controls procedures
- Differences in control and aircraft handling
- Emergency procedures

Flight training program - recommended

	Flight Training Procedure		Dual		Solo	
		Flights	hr/min	Flights	hr/min	
1.	Check flight	1	30'			
2.	Pattern training flights up to 1000 ft AGL	4	20'	3	15'	
3.	Pattern training flights up to 500 ft AGL	4	20'	3	15'	
4.	Stall speed, 45°turns, side slips	1	30'	1	20'	
5.	Emergency landing training	4	20'	3	10'	
Total		14	2 hr	10	1 hr	

BRISTELL LSA

Flight Training Procedure - description

- 1. Check flight Student Pilot will fly the airplane in local flight, instructor is giving advice as necessary.
- 2. Pattern training flights up to 1000 feet AGL high pattern procedures, instructor is giving advice as necessary.
- **3.** *Pattern training flights up to 500 feet AGL high pattern procedures, instructor is giving advice as necessary.*
- **4. Stall speed, 45° turns, sideslips** stall speed flaps retracted and extended (landing configuration), sideslips at landing configuration.
- 5. Emergency landing training emergency procedures and landing to 1/3 of runway.

NOTE
During solo flights instructor is observing the student pilot on pattern and
can advise by radio as necessary.

Endorsement:

Instructor will endorse the Type Rating to the Pilots Logbook, if required.

SUPPLEMENT No. 02

AIRCRAFT DESCRIPTION

Registration: N557BL

Serial Number: 357/2018

This Supplement must be contained in the Aircraft Operating Instructions during operation of the airplane.

Information contained in this Supplement add or replace information from the basic Aircraft Operating Instructions in the further mentioned parts only. Limitations, procedures and information not mentioned in this Supplement are contained in the basic Aircraft Operating Instructions.

0 TECHNICAL INFORMATION

This Supplement adds information necessary for airplane operation with equipment installed in the airplane **BRISTELL LSA, S/N 357/2018**.

0.1 Record of revisions

No changes.

1 GENERAL INFORMATION

No changes.

2 OPERATING LIMITATION

2.4.3 Oil

Type of oil used by aircraft manufacturer : Aeroshell OIL SPORT PLUS 4

2.4.4 Coolant

Type of used coolant: Castrol Radicool NF Mixture ratio coolant / water 1:1.5 litres (40%) (-25 °C) Max. Coolant temperature : 120 °C (248 °F)

3 EMERGENCY PROCEDURES

No changes.

4 NORMAL PROCEDURES

No changes.

5 PERFORMANCE

No changes.

Date of Issue: 08/2018

Revision: -

WEIGHT AND BALANCE 6

No changes.

7 AIRPLANE AND SYSTEMS DESCRIPTION No changes.

8 AIRPLANE HANDLING, SERVICING AND MAINTENANCE

No changes.

9 REQUIRED PLACARDS AND MARKINGS

No changes.